前言
`
肯德基作为全球知名的快餐连锁品牌,在选址方面有一些特点:
高人流密度:肯德基通常选择在人流量较高的地区进行选址。这包括商业区、购物中心、旅游景点、交通枢纽等地方,以确保有足够的顾客流量。
商业环境:肯德基更倾向于选择繁华商业环境,因为这些地区通常有更多的潜在顾客和商业机会。与其他餐饮品牌相比,肯德基更偏向于在市区或市中心设立门店。
交通便利性:肯德基优先选择交通便利的位置,例如主要道路、交叉口附近或公共交通站点周围。这有助于吸引过往的行人和车辆,并提供更多的方便。
可见性和易识别性:肯德基门店通常选择在显眼的位置,以便顾客能够轻松发现并识别品牌。标志性的外立面设计和大型招牌有助于增加品牌知名度。
周边配套设施:肯德基更倾向于选择周边有其他商业设施或娱乐设施的地点。例如,与电影院、游乐场、购物中心等相邻,可以吸引更多的顾客。
面积和停车设施:肯德基门店通常需要一定的面积来容纳就餐区、厨房设备和服务区域。同时,对于一些门店,提供足够数量的停车位也是重要的考虑因素。
潜在市场需求:肯德基会考虑选址位置的潜在市场需求,包括当地人口规模、消费能力、年龄结构和消费习惯等因素。
竞争对手分析:肯德基会评估选址附近的竞争对手状况,包括其他快餐连锁品牌和本地餐饮业务,以确定市场份额和差异化定位机会。
既然肯德基已经选好了最佳位置,那么我们直接拿来用即可,我选的分析数据是北京各区的肯德基门店详情,然后计算出各区的肯德基选址中心。假如我有A,B,C三家候选门店,我只需要找到离肯德基选址中心最近的门店即可。
一、dqnapi 是什么?
示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
dqnapi 是一个接口服务网站,网站包含各类接口,有股票,有OCR,有语言,免费和付费多种api接口,dqnapi号就是一个数字标识,给每一个接口增加一个身份编码,方便用户调用和查找,提供接口的公司注册一个dqnapi号可以帮助公司接口api 进行推广,接口信息有变化可以及时更新,不会出现用户无法找到的情况。
本文使用两个随机图片接口,dqnapi号分别是
1.100.35395/2023.15_v1
2.100.35395/2023.16_v1
3.100.35395/2023.17_v1
4.100.35395/2023.6_v1
dqnapi官网
二、使用步骤
1.抽取北京市下面的各个区的肯德基开店地址
代码如下(示例):
import requests
key = "" # 替换为您的高德地图开放平台密钥
def get_kfc_stores(city):
# 设置请求参数
url = 'https://restapi.amap.com/#############' #dqnapi号:100.35395/2023.16_v1
keywords = '肯德基' # 搜索关键词,这里设为肯德基
cityname = city # 城市名称
output = 'JSON' # 输出格式,这里选择JSON格式
stores = []
page = 1 # 分页码,初始为1
offset = 20 # 每页返回的结果数量
while True:
# 发送GET请求并获取响应
response = requests.get(url, params={'keywords': keywords, 'city': cityname, 'output': output, 'key': key, 'page': page, 'offset': offset})
data = response.json()
if data['status'] == '1':
pois = data['pois']
stores.extend(pois)
if len(pois) < offset:
# 如果返回的结果数量少于每页的数量,表示已经获取完所有结果,退出循环
break
else:
# 继续下一页的请求
page += 1
else:
print('请求出错:', data['info'])
break
return stores
def analyze_kfc_stores_in_city(city):
kfc_stores = get_kfc_stores(city)
result = f"在{city}找到了以下肯德基门店:\n"
if kfc_stores:
for store in kfc_stores:
name = store['name']
address = store['address']
result += f"门店名称:{name}\n"
result += f"地址:{address}\n"
result += f"地址:{city}\n"
result += "--------\n"
else:
result += f"在{city}没有找到肯德基门店。\n"
return result
def get_subdistricts(city):
url = 'https://restapi.amap.com/################' #dqnapi号:100.35395/2023.15_v1
keywords = city
subdistrict = '1'
response = requests.get(url, params={'keywords': keywords, 'subdistrict': subdistrict, 'key': key})
data = response.json()
if data['status'] == '1':
districts = data['districts'][1]['districts']
print(districts)
subdistricts = [district['name'] for district in districts]
return subdistricts
else:
print('请求出错:', data['info'])
return []
# 示例:获取北京市下一级行政区域名称
city = '北京'
subdistricts = get_subdistricts(city)#获取下一级行政区域
print(f"{city}的下一级行政区域有:{subdistricts}")
#获取全国城市列表
#all_cities = get_all_cities()
#分析每个城市的肯德基选址并保存结果到result.txt中
with open('result.txt', 'w', encoding='utf-8') as file:
for district in subdistricts:
result = analyze_kfc_stores_in_city(district)
file.write(result)
file.write('\n')
print("分析完成,结果已保存到result.txt中。")
2.读入数据分析各个区的肯德基选址中心
代码如下(示例):
import requests
import json
# 根据门店地址获取经纬度坐标
def get_location(address):
url = 'https://restapi.amap.com/###########' #dqnapi号:100.35395/2023.17_v1
params = {
'key': '',
'address': address,
'city': '北京'
}
response = requests.get(url, params=params)
data = json.loads(response.text)
if data['status'] == '1' and len(data['geocodes']) > 0:
location = data['geocodes'][0]['location']
latitude, longitude = location.split(',')
return float(latitude), float(longitude)
return None
# 读取门店信息文件
with open('result.txt', 'r', encoding='utf-8') as file:
lines = file.readlines()
# 声明一个字典,用于存储各个区的门店坐标列表
district_coordinates = {}
# 遍历每个门店信息,提取地址和区域信息
for i in range(len(lines)):
if lines[i].startswith('门店名称'):
store_name = lines[i].split(':')[1].strip()
elif lines[i].startswith('地址') and '区' in lines[i]:
address = lines[i].split(':')[1].strip()
district = lines[i+1].strip()
# 获取门店地址的经纬度坐标
location = get_location(address)
if location is not None:
latitude, longitude = location
# 将门店坐标添加到对应区的列表中
if district in district_coordinates:
district_coordinates[district].append((latitude, longitude))
else:
district_coordinates[district] = [(latitude, longitude)]
# 计算每个区的门店坐标的中心点
for district, coordinates in district_coordinates.items():
total_latitude = 0
total_longitude = 0
for coordinate in coordinates:
total_latitude += coordinate[0]
total_longitude += coordinate[1]
average_latitude = total_latitude / len(coordinates)
average_longitude = total_longitude / len(coordinates)
print(f"{district} 的门店中心坐标:")
print(f"纬度:{average_latitude}")
print(f"经度:{average_longitude}")
print()
该处使用的url网络请求的数据。
总结
提示:这里对文章进行总结:
1.第一步下载的数据可以直接从如下地址下载
北京各区肯德基选址详情
2.分析各个区的肯德基选址中心结果
| | |
地址:怀柔区 的门店中心坐标:
纬度:116.673162
经度:40.362814
地址:平谷区 的门店中心坐标:
纬度:117.111043
经度:40.140745
地址:西城区 的门店中心坐标:
纬度:116.3636885
经度:39.926902999999996
地址:大兴区 的门店中心坐标:
纬度:116.47712779999999
经度:39.7949296
地址:海淀区 的门店中心坐标:
纬度:116.29276811111112
经度:40.00995622222222
地址:顺义区 的门店中心坐标:
纬度:116.574058
经度:40.1097796
地址:昌平区 的门店中心坐标:
纬度:116.31209340000001
经度:40.1210954
地址:朝阳区 的门店中心坐标:
纬度:116.50549342857141
经度:39.953377214285716
地址:丰台区 的门店中心坐标:
纬度:116.3250015
经度:39.83795033333333
地址:通州区 的门店中心坐标:
纬度:116.616578625
经度:39.878681875
地址:东城区 的门店中心坐标:
纬度:116.40755899999999
经度:39.904064000000005
| | |
3.举例查询丰台肯德基选址中心
调用api:
https://uri.amap.com/marker/uri.amap.com/marker?position=116.3250015,39.83795033333333&name=丰台区&src=mypage&coordinate=gaode&callnative=0
详细参数可以参考danapi号:100.35395/2023.6_v1