网络AI助手的弊端,上传的数据超过一定量就无法完全读取,为了验证数学本人用以下模型
HistoryReverseModel: 原始逆向分析模型
SumFrequencyModel: 和值频率模型
SpanTrendModel: 跨度趋势模型
HotColdModel: 冷热号分析模型
OmissionModel: 遗漏分析模型
记一次基于本地化算法引擎的密集型数据分析实践:探索多模型协同下的数字型数据规律挖掘
在数据驱动的决策范式中,模型的可控性、计算的自主性与分析的深度,往往是依赖云端AI助手所难以完全实现的。尤其是在面对海量历史序列数据时,外部接口往往存在读取限制与黑箱约束。为此,我们开展了一次完全基于本地的模型验证实验,通过自主构建的算法体系,对福彩3D及大乐透类数字型数据进行了长达22小时的系统性分析,以探索多模型融合在时序与组合型数据中的解释能力与应用边界。
一、背景与方法
本次分析的核心目标,并非追求预测的确定性,而是通过多种数学模型对历史数据进行交叉验证,从而识别潜在的模式结构与统计特征。我们采用了全本地化部署的计算架构,避免了数据外传与接口限制,确保了分析过程的可复现性与数据安全性。
二、多模型协同分析框架
为实现对数据多维度特征的捕捉,本次实验构建了以下五个核心模型,并形成联合分析链路:
-
HistoryReverseModel(历史逆向分析模型)
基于序列回溯机制,从近期数据中逆向提取统计规律,用于识别短期趋势与结构性偏移。
-
SumFrequencyModel(和值频率模型)
针对数字组合型数据,建立和值分布的概率图谱,识别和值区间出现的频率异常与收敛特征。
-
SpanTrendModel(跨度趋势模型)
通过计算数字极差与跨度变化,分析号码分布的范围趋势及其随时间演变的稳定性。
-
HotColdModel(冷热号分析模型)
基于出现频次对号码进行热力分级,识别持续性活跃号码与长期遗漏号码,建立热冷态转换视图。
-
OmissionModel(遗漏分析模型)
追踪各号码的历史遗漏周期,分析遗漏值的分布规律与临界状态,辅助判断回补概率。
三、关键发现与模型效能
在超过22小时的持续计算中,各模型从不同维度对数据结构进行了剖解。尤其值得关注的是,SumFrequencyModel 在多次迭代中表现出对和值分布稳定性的显著识别能力,其输出结果在后续统计检验中显示出较高的解释效力。这表明,在数字型数据的分析中,和值作为一个聚合指标,具有较强的统计承载能力与模式显著性。
四、启示与展望
本次实验虽以数字型数据为对象,但其方法框架可扩展至更多具有序列特征与组合结构的数据场景,如库存周期分析、舆情事件演化、交通流量模式识别等。通过多模型本地化协同分析,我们能够在完全自主的计算环境中,实现数据规律的深度挖掘与模型效能的系统评估。
未来,我们将进一步引入时序神经网络、集成学习等方法,并与现有模型进行融合比较,以构建更鲁棒、可解释的分析体系。计算或许漫长,但每一步自主的探索,都在为更理性的认知添砖加瓦。
详细过程:
E:\前端\yuanbao-uniapp-new\src\api\dlt.py
================================================================================
福彩3D深度逆向分析预测系统(6模型集成版)
目标: 预测数据库中不包含的下一期
================================================================================
[1/4] 加载历史数据...
正在加载数据文件: C:\Users\Administrator\Desktop\data\脚本\3d\
utf-8 编码失败: 'utf-8' codec can't decode byte 0xc6 in position 0...
✓ 成功使用 gbk 编码加载数据,原始形状: (8483, 5)
处理后数据形状: (8483, 5)
正在清理数据...
✓ 数据清理完成: 8483 -> 8482 期有效数据
开奖号码示例: ['073', '237', '071']
✓ 数据加载完成,共8482期历史数据
✓ 数据库最后1期: 第2025325期
✓ 预测目标: 第8483期(数据库中不包含的新一期)
[2/4] 准备特征数据...
正在准备特征数据...
✓ 特征数据准备完成
✓ 特征数据准备完成
[3/4] 初始化6模型集成分析系统...
预计算数据特征...
特征预计算: |██████████████████████████████| 100.0% (4/4) 耗时:0.7s 剩余:0.0s
✓ 数据特征预计算完成
正在进行深度逆向分析测试...
开始深度逆向分析...
总数据期数: 8482期
将测试 10 个周期长度: [300, 770, 1240, 1710, 2180, 2650, 3120, 3590, 4060, 4530]
运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:61.3s 剩余:0.0s
测试窗口300期: |░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 2.0% (2/100) 耗时:61.3s 剩余:3002.5s 窗口2/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:28.4s 剩余:0.0s
测试窗口300期: |░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 3.0% (3/100) 耗时:89.7s 剩余:2899.3s 窗口3/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.9s 剩余:0.0s
测试窗口300期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 4.0% (4/100) 耗时:117.6s 剩余:2822.6s 窗口4/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:30.3s 剩余:0.0s
测试窗口300期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 5.0% (5/100) 耗时:147.9s 剩余:2809.6s 窗口5/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:28.7s 剩余:0.0s
测试窗口300期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 6.0% (6/100) 耗时:176.6s 剩余:2766.1s 窗口6/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.6s 剩余:0.0s
测试窗口300期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 7.0% (7/100) 耗时:204.2s 剩余:2712.5s 窗口7/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:36.6s 剩余:0.0s
测试窗口300期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 8.0% (8/100) 耗时:240.8s 剩余:2769.1s 窗口8/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:26.6s 剩余:0.0s
测试窗口300期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 9.0% (9/100) 耗时:267.4s 剩余:2703.3s 窗口9/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:26.7s 剩余:0.0s
测试窗口300期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 10.0% (10/100) 耗时:294.0s 剩余:2646.2s 窗口10/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:26.4s 剩余:0.0s
测试窗口300期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 11.0% (11/100) 耗时:320.4s 剩余:2592.4s 窗口11/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.4s 剩余:0.0s
测试窗口300期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 12.0% (12/100) 耗时:347.8s 剩余:2550.6s 窗口12/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:26.5s 剩余:0.0s
测试窗口300期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 13.0% (13/100) 耗时:374.3s 剩余:2504.9s 窗口13/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:28.5s 剩余:0.0s
测试窗口300期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 14.0% (14/100) 耗时:402.8s 剩余:2474.1s 窗口14/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.4s 剩余:0.0s
测试窗口300期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 15.0% (15/100) 耗时:430.1s 剩余:2437.5s 窗口15/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.7s 剩余:0.0s
测试窗口300期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 16.0% (16/100) 耗时:457.9s 剩余:2403.9s 窗口16/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:26.1s 剩余:0.0s
测试窗口300期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 17.0% (17/100) 耗时:484.0s 剩余:2362.9s 窗口17/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:26.2s 剩余:0.0s
测试窗口300期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 18.0% (18/100) 耗时:510.2s 剩余:2324.2s 窗口18/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:30.4s 剩余:0.0s
测试窗口300期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 19.0% (19/100) 耗时:540.6s 剩余:2304.7s 窗口19/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:31.2s 剩余:0.0s
测试窗口300期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 20.0% (20/100) 耗时:571.9s 剩余:2287.4s 窗口20/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:30.6s 剩余:0.0s
测试窗口300期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 21.0% (21/100) 耗时:602.5s 剩余:2266.4s 窗口21/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:29.4s 剩余:0.0s
测试窗口300期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 22.0% (22/100) 耗时:631.8s 剩余:2240.2s 窗口22/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:30.9s 剩余:0.0s
测试窗口300期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 23.0% (23/100) 耗时:662.8s 剩余:2218.8s 窗口23/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:30.6s 剩余:0.0s
测试窗口300期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 24.0% (24/100) 耗时:693.3s 剩余:2195.6s 窗口24/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:30.5s 剩余:0.0s
测试窗口300期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 25.0% (25/100) 耗时:723.9s 剩余:2171.6s 窗口25/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:28.6s 剩余:0.0s
测试窗口300期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 26.0% (26/100) 耗时:752.5s 剩余:2141.6s 窗口26/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:26.1s 剩余:0.0s
测试窗口300期: |████████░░░░░░░░░░░░░░░░░░░░░░| 27.0% (27/100) 耗时:778.5s 剩余:2105.0s 窗口27/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:33.6s 剩余:0.0s
测试窗口300期: |████████░░░░░░░░░░░░░░░░░░░░░░| 28.0% (28/100) 耗时:812.1s 剩余:2088.3s 窗口28/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:26.2s 剩余:0.0s
测试窗口300期: |████████░░░░░░░░░░░░░░░░░░░░░░| 29.0% (29/100) 耗时:838.4s 剩余:2052.5s 窗口29/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:26.0s 剩余:0.0s
测试窗口300期: |█████████░░░░░░░░░░░░░░░░░░░░░| 30.0% (30/100) 耗时:864.3s 剩余:2016.8s 窗口30/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:30.7s 剩余:0.0s
测试窗口300期: |█████████░░░░░░░░░░░░░░░░░░░░░| 31.0% (31/100) 耗时:895.0s 剩余:1992.1s 窗口31/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:25.5s 剩余:0.0s
测试窗口300期: |█████████░░░░░░░░░░░░░░░░░░░░░| 32.0% (32/100) 耗时:920.5s 剩余:1956.0s 窗口32/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:24.6s 剩余:0.0s
测试窗口300期: |█████████░░░░░░░░░░░░░░░░░░░░░| 33.0% (33/100) 耗时:945.0s 剩余:1918.7s 窗口33/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:24.9s 剩余:0.0s
测试窗口300期: |██████████░░░░░░░░░░░░░░░░░░░░| 34.0% (34/100) 耗时:969.9s 剩余:1882.8s 窗口34/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:23.5s 剩余:0.0s
测试窗口300期: |██████████░░░░░░░░░░░░░░░░░░░░| 35.0% (35/100) 耗时:993.4s 剩余:1844.9s 窗口35/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.6s 剩余:0.0s
测试窗口300期: |██████████░░░░░░░░░░░░░░░░░░░░| 36.0% (36/100) 耗时:1021.0s 剩余:1815.1s 窗口36/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.0s 剩余:0.0s
测试窗口300期: |███████████░░░░░░░░░░░░░░░░░░░| 37.0% (37/100) 耗时:1048.0s 剩余:1784.5s 窗口37/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:31.0s 剩余:0.0s
测试窗口300期: |███████████░░░░░░░░░░░░░░░░░░░| 38.0% (38/100) 耗时:1079.0s 剩余:1760.5s 窗口38/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:29.0s 剩余:0.0s
测试窗口300期: |███████████░░░░░░░░░░░░░░░░░░░| 39.0% (39/100) 耗时:1108.0s 剩余:1733.0s 窗口39/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:53.7s 剩余:0.0s
测试窗口300期: |████████████░░░░░░░░░░░░░░░░░░| 40.0% (40/100) 耗时:1161.7s 剩余:1742.5s 窗口40/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.1s 剩余:0.0s
测试窗口300期: |████████████░░░░░░░░░░░░░░░░░░| 41.0% (41/100) 耗时:1188.8s 剩余:1710.7s 窗口41/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:25.8s 剩余:0.0s
测试窗口300期: |████████████░░░░░░░░░░░░░░░░░░| 42.0% (42/100) 耗时:1214.6s 剩余:1677.3s 窗口42/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.7s 剩余:0.0s
测试窗口300期: |████████████░░░░░░░░░░░░░░░░░░| 43.0% (43/100) 耗时:1242.4s 剩余:1646.9s 窗口43/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:25.6s 剩余:0.0s
测试窗口300期: |█████████████░░░░░░░░░░░░░░░░░| 44.0% (44/100) 耗时:1267.9s 剩余:1613.7s 窗口44/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:25.4s 剩余:0.0s
测试窗口300期: |█████████████░░░░░░░░░░░░░░░░░| 45.0% (45/100) 耗时:1293.3s 剩余:1580.8s 窗口45/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:24.8s 剩余:0.0s
测试窗口300期: |█████████████░░░░░░░░░░░░░░░░░| 46.0% (46/100) 耗时:1318.2s 剩余:1547.4s 窗口46/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.6s 剩余:0.0s
测试窗口300期: |██████████████░░░░░░░░░░░░░░░░| 47.0% (47/100) 耗时:1345.8s 剩余:1517.6s 窗口47/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.9s 剩余:0.0s
测试窗口300期: |██████████████░░░░░░░░░░░░░░░░| 48.0% (48/100) 耗时:1373.7s 剩余:1488.2s 窗口48/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:25.6s 剩余:0.0s
测试窗口300期: |██████████████░░░░░░░░░░░░░░░░| 49.0% (49/100) 耗时:1399.3s 剩余:1456.4s 窗口49/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:24.4s 剩余:0.0s
测试窗口300期: |███████████████░░░░░░░░░░░░░░░| 50.0% (50/100) 耗时:1423.7s 剩余:1423.7s 窗口50/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:23.3s 剩余:0.0s
测试窗口300期: |███████████████░░░░░░░░░░░░░░░| 51.0% (51/100) 耗时:1447.0s 剩余:1390.2s 窗口51/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:25.0s 剩余:0.0s
测试窗口300期: |███████████████░░░░░░░░░░░░░░░| 52.0% (52/100) 耗时:1472.0s 剩余:1358.7s 窗口52/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:25.6s 剩余:0.0s
测试窗口300期: |███████████████░░░░░░░░░░░░░░░| 53.0% (53/100) 耗时:1497.6s 剩余:1328.1s 窗口53/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:24.8s 剩余:0.0s
测试窗口300期: |████████████████░░░░░░░░░░░░░░| 54.0% (54/100) 耗时:1522.4s 剩余:1296.8s 窗口54/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.0s 剩余:0.0s
测试窗口300期: |████████████████░░░░░░░░░░░░░░| 55.0% (55/100) 耗时:1549.4s 剩余:1267.7s 窗口55/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:25.4s 剩余:0.0s
测试窗口300期: |████████████████░░░░░░░░░░░░░░| 56.0% (56/100) 耗时:1574.8s 剩余:1237.3s 窗口56/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:25.5s 剩余:0.0s
测试窗口300期: |█████████████████░░░░░░░░░░░░░| 57.0% (57/100) 耗时:1600.3s 剩余:1207.2s 窗口57/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:25.0s 剩余:0.0s
测试窗口300期: |█████████████████░░░░░░░░░░░░░| 58.0% (58/100) 耗时:1625.3s 剩余:1177.0s 窗口58/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:23.4s 剩余:0.0s
测试窗口300期: |█████████████████░░░░░░░░░░░░░| 59.0% (59/100) 耗时:1648.8s 剩余:1145.7s 窗口59/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:22.7s 剩余:0.0s
测试窗口300期: |██████████████████░░░░░░░░░░░░| 60.0% (60/100) 耗时:1671.5s 剩余:1114.3s 窗口60/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:22.3s 剩余:0.0s
测试窗口300期: |██████████████████░░░░░░░░░░░░| 61.0% (61/100) 耗时:1693.8s 剩余:1082.9s 窗口61/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:24.2s 剩余:0.0s
测试窗口300期: |██████████████████░░░░░░░░░░░░| 62.0% (62/100) 耗时:1718.0s 剩余:1053.0s 窗口62/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:24.2s 剩余:0.0s
测试窗口300期: |██████████████████░░░░░░░░░░░░| 63.0% (63/100) 耗时:1742.2s 剩余:1023.2s 窗口63/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:24.1s 剩余:0.0s
测试窗口300期: |███████████████████░░░░░░░░░░░| 64.0% (64/100) 耗时:1766.3s 剩余:993.5s 窗口64/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:23.7s 剩余:0.0s
测试窗口300期: |███████████████████░░░░░░░░░░░| 65.0% (65/100) 耗时:1790.0s 剩余:963.9s 窗口65/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:26.0s 剩余:0.0s
测试窗口300期: |███████████████████░░░░░░░░░░░| 66.0% (66/100) 耗时:1816.1s 剩余:935.6s 窗口66/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:24.7s 剩余:0.0s
测试窗口300期: |████████████████████░░░░░░░░░░| 67.0% (67/100) 耗时:1840.8s 剩余:906.6s 窗口67/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:24.5s 剩余:0.0s
测试窗口300期: |████████████████████░░░░░░░░░░| 68.0% (68/100) 耗时:1865.2s 剩余:877.8s 窗口68/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:25.6s 剩余:0.0s
测试窗口300期: |████████████████████░░░░░░░░░░| 69.0% (69/100) 耗时:1890.8s 剩余:849.5s 窗口69/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:24.7s 剩余:0.0s
测试窗口300期: |█████████████████████░░░░░░░░░| 70.0% (70/100) 耗时:1915.6s 剩余:821.0s 窗口70/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.1s 剩余:0.0s
测试窗口300期: |█████████████████████░░░░░░░░░| 71.0% (71/100) 耗时:1942.7s 剩余:793.5s 窗口71/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:29.1s 剩余:0.0s
测试窗口300期: |█████████████████████░░░░░░░░░| 72.0% (72/100) 耗时:1971.8s 剩余:766.8s 窗口72/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:33.2s 剩余:0.0s
测试窗口300期: |█████████████████████░░░░░░░░░| 73.0% (73/100) 耗时:2005.0s 剩余:741.6s 窗口73/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:35.7s 剩余:0.0s
测试窗口300期: |██████████████████████░░░░░░░░| 74.0% (74/100) 耗时:2040.7s 剩余:717.0s 窗口74/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:30.4s 剩余:0.0s
测试窗口300期: |██████████████████████░░░░░░░░| 75.0% (75/100) 耗时:2071.1s 剩余:690.4s 窗口75/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:30.6s 剩余:0.0s
测试窗口300期: |██████████████████████░░░░░░░░| 76.0% (76/100) 耗时:2101.8s 剩余:663.7s 窗口76/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:34.0s 剩余:0.0s
测试窗口300期: |███████████████████████░░░░░░░| 77.0% (77/100) 耗时:2135.8s 剩余:638.0s 窗口77/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:33.1s 剩余:0.0s
测试窗口300期: |███████████████████████░░░░░░░| 78.0% (78/100) 耗时:2168.9s 剩余:611.7s 窗口78/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:39.6s 剩余:0.0s
测试窗口300期: |███████████████████████░░░░░░░| 79.0% (79/100) 耗时:2208.6s 剩余:587.1s 窗口79/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:24.4s 剩余:0.0s
测试窗口300期: |████████████████████████░░░░░░| 80.0% (80/100) 耗时:2232.9s 剩余:558.2s 窗口80/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:38.0s 剩余:0.0s
测试窗口300期: |████████████████████████░░░░░░| 81.0% (81/100) 耗时:2270.9s 剩余:532.7s 窗口81/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:33.1s 剩余:0.0s
测试窗口300期: |████████████████████████░░░░░░| 82.0% (82/100) 耗时:2304.0s 剩余:505.8s 窗口82/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:28.9s 剩余:0.0s
测试窗口300期: |████████████████████████░░░░░░| 83.0% (83/100) 耗时:2332.9s 剩余:477.8s 窗口83/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:30.0s 剩余:0.0s
测试窗口300期: |█████████████████████████░░░░░| 84.0% (84/100) 耗时:2362.9s 剩余:450.1s 窗口84/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:28.2s 剩余:0.0s
测试窗口300期: |█████████████████████████░░░░░| 85.0% (85/100) 耗时:2391.1s 剩余:422.0s 窗口85/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:28.2s 剩余:0.0s
测试窗口300期: |█████████████████████████░░░░░| 86.0% (86/100) 耗时:2419.3s 剩余:393.8s 窗口86/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:29.9s 剩余:0.0s
测试窗口300期: |██████████████████████████░░░░| 87.0% (87/100) 耗时:2449.2s 剩余:366.0s 窗口87/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:26.4s 剩余:0.0s
测试窗口300期: |██████████████████████████░░░░| 88.0% (88/100) 耗时:2475.6s 剩余:337.6s 窗口88/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:26.5s 剩余:0.0s
测试窗口300期: |██████████████████████████░░░░| 89.0% (89/100) 耗时:2502.1s 剩余:309.2s 窗口89/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:31.3s 剩余:0.0s
测试窗口300期: |███████████████████████████░░░| 90.0% (90/100) 耗时:2533.4s 剩余:281.5s 窗口90/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:29.9s 剩余:0.0s
测试窗口300期: |███████████████████████████░░░| 91.0% (91/100) 耗时:2563.3s 剩余:253.5s 窗口91/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:28.2s 剩余:0.0s
测试窗口300期: |███████████████████████████░░░| 92.0% (92/100) 耗时:2591.5s 剩余:225.3s 窗口92/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:28.1s 剩余:0.0s
测试窗口300期: |███████████████████████████░░░| 93.0% (93/100) 耗时:2619.6s 剩余:197.2s 窗口93/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.1s 剩余:0.0s
测试窗口300期: |████████████████████████████░░| 94.0% (94/100) 耗时:2646.7s 剩余:168.9s 窗口94/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:25.8s 剩余:0.0s
测试窗口300期: |████████████████████████████░░| 95.0% (95/100) 耗时:2672.5s 剩余:140.7s 窗口95/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:26.5s 剩余:0.0s
测试窗口300期: |████████████████████████████░░| 96.0% (96/100) 耗时:2699.0s 剩余:112.5s 窗口96/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:26.1s 剩余:0.0s
测试窗口300期: |█████████████████████████████░| 97.0% (97/100) 耗时:2725.1s 剩余:84.3s 窗口97/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.9s 剩余:0.0s
测试窗口300期: |█████████████████████████████░| 98.0% (98/100) 耗时:2753.0s 剩余:56.2s 窗口98/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:25.3s 剩余:0.0s
测试窗口300期: |█████████████████████████████░| 99.0% (99/100) 耗时:2778.4s 剩余:28.1s 窗口99/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:27.6s 剩余:0.0s
测试窗口300期: |██████████████████████████████| 100.0% (100/100) 耗时:2805.9s 剩余:0.0s 窗口100/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:28.7s 剩余:0.0s
测试窗口300期: |██████████████████████████████| 100.0% (100/100) 耗时:2834.6s 剩余:0.0s
周期300期: 成功率=4.9500% (测试2000次)
逆向分析进度: |██████████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 20.0% (2/10) 耗时:2834.6s 剩余:11338.5s 测试周期:770期运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:48.7s 剩余:0.0s
测试窗口770期: |░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 2.0% (2/100) 耗时:48.8s 剩余:2388.9s 窗口2/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:67.5s 剩余:0.0s
测试窗口770期: |░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 3.0% (3/100) 耗时:116.3s 剩余:3759.6s 窗口3/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:53.2s 剩余:0.0s
测试窗口770期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 4.0% (4/100) 耗时:169.5s 剩余:4068.5s 窗口4/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:45.4s 剩余:0.0s
测试窗口770期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 5.0% (5/100) 耗时:214.9s 剩余:4082.7s 窗口5/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:46.3s 剩余:0.0s
测试窗口770期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 6.0% (6/100) 耗时:261.2s 剩余:4092.2s 窗口6/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:40.9s 剩余:0.0s
测试窗口770期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 7.0% (7/100) 耗时:302.1s 剩余:4013.1s 窗口7/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:40.2s 剩余:0.0s
测试窗口770期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 8.0% (8/100) 耗时:342.3s 剩余:3936.0s 窗口8/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:42.7s 剩余:0.0s
测试窗口770期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 9.0% (9/100) 耗时:385.0s 剩余:3892.5s 窗口9/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:44.1s 剩余:0.0s
测试窗口770期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 10.0% (10/100) 耗时:429.1s 剩余:3861.8s 窗口10/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:47.8s 剩余:0.0s
测试窗口770期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 11.0% (11/100) 耗时:476.9s 剩余:3858.7s 窗口11/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:47.3s 剩余:0.0s
测试窗口770期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 12.0% (12/100) 耗时:524.2s 剩余:3844.3s 窗口12/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:51.4s 剩余:0.0s
测试窗口770期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 13.0% (13/100) 耗时:575.6s 剩余:3852.3s 窗口13/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:48.3s 剩余:0.0s
测试窗口770期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 14.0% (14/100) 耗时:623.9s 剩余:3832.5s 窗口14/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:51.6s 剩余:0.0s
测试窗口770期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 15.0% (15/100) 耗时:675.5s 剩余:3828.1s 窗口15/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:49.7s 剩余:0.0s
测试窗口770期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 16.0% (16/100) 耗时:725.2s 剩余:3807.5s 窗口16/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:51.8s 剩余:0.0s
测试窗口770期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 17.0% (17/100) 耗时:777.0s 剩余:3793.7s 窗口17/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:52.5s 剩余:0.0s
测试窗口770期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 18.0% (18/100) 耗时:829.6s 剩余:3779.1s 窗口18/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:52.2s 剩余:0.0s
测试窗口770期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 19.0% (19/100) 耗时:881.8s 剩余:3759.0s 窗口19/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:53.7s 剩余:0.0s
测试窗口770期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 20.0% (20/100) 耗时:935.5s 剩余:3741.9s 窗口20/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:50.7s 剩余:0.0s
测试窗口770期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 21.0% (21/100) 耗时:986.1s 剩余:3709.8s 窗口21/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:50.2s 剩余:0.0s
测试窗口770期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 22.0% (22/100) 耗时:1036.4s 剩余:3674.4s 窗口22/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:60.1s 剩余:0.0s
测试窗口770期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 23.0% (23/100) 耗时:1096.5s 剩余:3670.8s 窗口23/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:50.5s 剩余:0.0s
测试窗口770期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 24.0% (24/100) 耗时:1147.0s 剩余:3632.2s 窗口24/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:43.5s 剩余:0.0s
测试窗口770期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 25.0% (25/100) 耗时:1190.5s 剩余:3571.6s 窗口25/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:44.9s 剩余:0.0s
测试窗口770期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 26.0% (26/100) 耗时:1235.5s 剩余:3516.3s 窗口26/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:44.0s 剩余:0.0s
测试窗口770期: |████████░░░░░░░░░░░░░░░░░░░░░░| 27.0% (27/100) 耗时:1279.5s 剩余:3459.4s 窗口27/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:49.6s 剩余:0.0s
测试窗口770期: |████████░░░░░░░░░░░░░░░░░░░░░░| 28.0% (28/100) 耗时:1329.1s 剩余:3417.8s 窗口28/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:58.0s 剩余:0.0s
测试窗口770期: |████████░░░░░░░░░░░░░░░░░░░░░░| 29.0% (29/100) 耗时:1387.2s 剩余:3396.2s 窗口29/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:64.6s 剩余:0.0s
测试窗口770期: |█████████░░░░░░░░░░░░░░░░░░░░░| 30.0% (30/100) 耗时:1451.8s 剩余:3387.6s 窗口30/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:68.2s 剩余:0.0s
测试窗口770期: |█████████░░░░░░░░░░░░░░░░░░░░░| 31.0% (31/100) 耗时:1520.0s 剩余:3383.2s 窗口31/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:68.2s 剩余:0.0s
测试窗口770期: |█████████░░░░░░░░░░░░░░░░░░░░░| 32.0% (32/100) 耗时:1588.2s 剩余:3375.0s 窗口32/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.0s 剩余:0.0s
测试窗口770期: |█████████░░░░░░░░░░░░░░░░░░░░░| 33.0% (33/100) 耗时:1662.2s 剩余:3374.7s 窗口33/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.5s 剩余:0.0s
测试窗口770期: |██████████░░░░░░░░░░░░░░░░░░░░| 34.0% (34/100) 耗时:1741.7s 剩余:3380.9s 窗口34/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:67.9s 剩余:0.0s
测试窗口770期: |██████████░░░░░░░░░░░░░░░░░░░░| 35.0% (35/100) 耗时:1809.5s 剩余:3360.6s 窗口35/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.4s 剩余:0.0s
测试窗口770期: |██████████░░░░░░░░░░░░░░░░░░░░| 36.0% (36/100) 耗时:1884.9s 剩余:3351.0s 窗口36/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.4s 剩余:0.0s
测试窗口770期: |███████████░░░░░░░░░░░░░░░░░░░| 37.0% (37/100) 耗时:1958.3s 剩余:3334.4s 窗口37/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:61.5s 剩余:0.0s
测试窗口770期: |███████████░░░░░░░░░░░░░░░░░░░| 38.0% (38/100) 耗时:2019.9s 剩余:3295.6s 窗口38/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:81.7s 剩余:0.0s
测试窗口770期: |███████████░░░░░░░░░░░░░░░░░░░| 39.0% (39/100) 耗时:2101.6s 剩余:3287.1s 窗口39/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.6s 剩余:0.0s
测试窗口770期: |████████████░░░░░░░░░░░░░░░░░░| 40.0% (40/100) 耗时:2174.1s 剩余:3261.2s 窗口40/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:65.6s 剩余:0.0s
测试窗口770期: |████████████░░░░░░░░░░░░░░░░░░| 41.0% (41/100) 耗时:2239.7s 剩余:3223.0s 窗口41/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.9s 剩余:0.0s
测试窗口770期: |████████████░░░░░░░░░░░░░░░░░░| 42.0% (42/100) 耗时:2320.6s 剩余:3204.7s 窗口42/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.4s 剩余:0.0s
测试窗口770期: |████████████░░░░░░░░░░░░░░░░░░| 43.0% (43/100) 耗时:2395.1s 剩余:3174.8s 窗口43/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:53.8s 剩余:0.0s
测试窗口770期: |█████████████░░░░░░░░░░░░░░░░░| 44.0% (44/100) 耗时:2448.8s 剩余:3116.7s 窗口44/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:51.9s 剩余:0.0s
测试窗口770期: |█████████████░░░░░░░░░░░░░░░░░| 45.0% (45/100) 耗时:2500.8s 剩余:3056.5s 窗口45/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:54.8s 剩余:0.0s
测试窗口770期: |█████████████░░░░░░░░░░░░░░░░░| 46.0% (46/100) 耗时:2555.5s 剩余:3000.0s 窗口46/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:56.3s 剩余:0.0s
测试窗口770期: |██████████████░░░░░░░░░░░░░░░░| 47.0% (47/100) 耗时:2611.8s 剩余:2945.2s 窗口47/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:57.3s 剩余:0.0s
测试窗口770期: |██████████████░░░░░░░░░░░░░░░░| 48.0% (48/100) 耗时:2669.1s 剩余:2891.5s 窗口48/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:58.3s 剩余:0.0s
测试窗口770期: |██████████████░░░░░░░░░░░░░░░░| 49.0% (49/100) 耗时:2727.5s 剩余:2838.8s 窗口49/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:63.8s 剩余:0.0s
测试窗口770期: |███████████████░░░░░░░░░░░░░░░| 50.0% (50/100) 耗时:2791.2s 剩余:2791.2s 窗口50/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:59.9s 剩余:0.0s
测试窗口770期: |███████████████░░░░░░░░░░░░░░░| 51.0% (51/100) 耗时:2851.1s 剩余:2739.3s 窗口51/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:58.7s 剩余:0.0s
测试窗口770期: |███████████████░░░░░░░░░░░░░░░| 52.0% (52/100) 耗时:2909.8s 剩余:2686.0s 窗口52/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:49.9s 剩余:0.0s
测试窗口770期: |███████████████░░░░░░░░░░░░░░░| 53.0% (53/100) 耗时:2959.7s 剩余:2624.6s 窗口53/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:54.7s 剩余:0.0s
测试窗口770期: |████████████████░░░░░░░░░░░░░░| 54.0% (54/100) 耗时:3014.4s 剩余:2567.8s 窗口54/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:49.3s 剩余:0.0s
测试窗口770期: |████████████████░░░░░░░░░░░░░░| 55.0% (55/100) 耗时:3063.7s 剩余:2506.7s 窗口55/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:50.4s 剩余:0.0s
测试窗口770期: |████████████████░░░░░░░░░░░░░░| 56.0% (56/100) 耗时:3114.2s 剩余:2446.8s 窗口56/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:48.8s 剩余:0.0s
测试窗口770期: |█████████████████░░░░░░░░░░░░░| 57.0% (57/100) 耗时:3163.0s 剩余:2386.1s 窗口57/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:50.3s 剩余:0.0s
测试窗口770期: |█████████████████░░░░░░░░░░░░░| 58.0% (58/100) 耗时:3213.3s 剩余:2326.9s 窗口58/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:50.2s 剩余:0.0s
测试窗口770期: |█████████████████░░░░░░░░░░░░░| 59.0% (59/100) 耗时:3263.5s 剩余:2267.9s 窗口59/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:49.2s 剩余:0.0s
测试窗口770期: |██████████████████░░░░░░░░░░░░| 60.0% (60/100) 耗时:3312.7s 剩余:2208.5s 窗口60/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:51.1s 剩余:0.0s
测试窗口770期: |██████████████████░░░░░░░░░░░░| 61.0% (61/100) 耗时:3363.8s 剩余:2150.6s 窗口61/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:53.4s 剩余:0.0s
测试窗口770期: |██████████████████░░░░░░░░░░░░| 62.0% (62/100) 耗时:3417.2s 剩余:2094.4s 窗口62/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:52.3s 剩余:0.0s
测试窗口770期: |██████████████████░░░░░░░░░░░░| 63.0% (63/100) 耗时:3469.4s 剩余:2037.6s 窗口63/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:58.5s 剩余:0.0s
测试窗口770期: |███████████████████░░░░░░░░░░░| 64.0% (64/100) 耗时:3527.9s 剩余:1984.5s 窗口64/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:57.7s 剩余:0.0s
测试窗口770期: |███████████████████░░░░░░░░░░░| 65.0% (65/100) 耗时:3585.7s 剩余:1930.7s 窗口65/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:54.5s 剩余:0.0s
测试窗口770期: |███████████████████░░░░░░░░░░░| 66.0% (66/100) 耗时:3640.6s 剩余:1875.5s 窗口66/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:55.8s 剩余:0.0s
测试窗口770期: |████████████████████░░░░░░░░░░| 67.0% (67/100) 耗时:3696.5s 剩余:1820.6s 窗口67/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:50.4s 剩余:0.0s
测试窗口770期: |████████████████████░░░░░░░░░░| 68.0% (68/100) 耗时:3747.0s 剩余:1763.3s 窗口68/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:49.6s 剩余:0.0s
测试窗口770期: |████████████████████░░░░░░░░░░| 69.0% (69/100) 耗时:3796.6s 剩余:1705.7s 窗口69/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:56.0s 剩余:0.0s
测试窗口770期: |█████████████████████░░░░░░░░░| 70.0% (70/100) 耗时:3852.6s 剩余:1651.1s 窗口70/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:46.7s 剩余:0.0s
测试窗口770期: |█████████████████████░░░░░░░░░| 71.0% (71/100) 耗时:3899.3s 剩余:1592.7s 窗口71/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:55.3s 剩余:0.0s
测试窗口770期: |█████████████████████░░░░░░░░░| 72.0% (72/100) 耗时:3954.6s 剩余:1537.9s 窗口72/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:50.1s 剩余:0.0s
测试窗口770期: |█████████████████████░░░░░░░░░| 73.0% (73/100) 耗时:4004.6s 剩余:1481.2s 窗口73/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:52.8s 剩余:0.0s
测试窗口770期: |██████████████████████░░░░░░░░| 74.0% (74/100) 耗时:4057.4s 剩余:1425.6s 窗口74/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:58.2s 剩余:0.0s
测试窗口770期: |██████████████████████░░░░░░░░| 75.0% (75/100) 耗时:4115.7s 剩余:1371.9s 窗口75/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:55.2s 剩余:0.0s
测试窗口770期: |██████████████████████░░░░░░░░| 76.0% (76/100) 耗时:4170.9s 剩余:1317.1s 窗口76/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:52.2s 剩余:0.0s
测试窗口770期: |███████████████████████░░░░░░░| 77.0% (77/100) 耗时:4223.2s 剩余:1261.5s 窗口77/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:51.1s 剩余:0.0s
测试窗口770期: |███████████████████████░░░░░░░| 78.0% (78/100) 耗时:4274.3s 剩余:1205.6s 窗口78/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:57.6s 剩余:0.0s
测试窗口770期: |███████████████████████░░░░░░░| 79.0% (79/100) 耗时:4331.9s 剩余:1151.5s 窗口79/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:54.9s 剩余:0.0s
测试窗口770期: |████████████████████████░░░░░░| 80.0% (80/100) 耗时:4386.8s 剩余:1096.7s 窗口80/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:54.1s 剩余:0.0s
测试窗口770期: |████████████████████████░░░░░░| 81.0% (81/100) 耗时:4441.0s 剩余:1041.7s 窗口81/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:53.5s 剩余:0.0s
测试窗口770期: |████████████████████████░░░░░░| 82.0% (82/100) 耗时:4494.4s 剩余:986.6s 窗口82/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:58.6s 剩余:0.0s
测试窗口770期: |████████████████████████░░░░░░| 83.0% (83/100) 耗时:4553.1s 剩余:932.6s 窗口83/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:53.9s 剩余:0.0s
测试窗口770期: |█████████████████████████░░░░░| 84.0% (84/100) 耗时:4606.9s 剩余:877.5s 窗口84/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:53.8s 剩余:0.0s
测试窗口770期: |█████████████████████████░░░░░| 85.0% (85/100) 耗时:4660.8s 剩余:822.5s 窗口85/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:57.3s 剩余:0.0s
测试窗口770期: |█████████████████████████░░░░░| 86.0% (86/100) 耗时:4718.1s 剩余:768.1s 窗口86/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:57.5s 剩余:0.0s
测试窗口770期: |██████████████████████████░░░░| 87.0% (87/100) 耗时:4775.7s 剩余:713.6s 窗口87/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:63.0s 剩余:0.0s
测试窗口770期: |██████████████████████████░░░░| 88.0% (88/100) 耗时:4838.7s 剩余:659.8s 窗口88/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:62.4s 剩余:0.0s
测试窗口770期: |██████████████████████████░░░░| 89.0% (89/100) 耗时:4901.1s 剩余:605.8s 窗口89/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:62.5s 剩余:0.0s
测试窗口770期: |███████████████████████████░░░| 90.0% (90/100) 耗时:4963.7s 剩余:551.5s 窗口90/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:57.7s 剩余:0.0s
测试窗口770期: |███████████████████████████░░░| 91.0% (91/100) 耗时:5021.5s 剩余:496.6s 窗口91/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:52.6s 剩余:0.0s
测试窗口770期: |███████████████████████████░░░| 92.0% (92/100) 耗时:5074.1s 剩余:441.2s 窗口92/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:51.9s 剩余:0.0s
测试窗口770期: |███████████████████████████░░░| 93.0% (93/100) 耗时:5126.0s 剩余:385.8s 窗口93/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:52.6s 剩余:0.0s
测试窗口770期: |████████████████████████████░░| 94.0% (94/100) 耗时:5178.8s 剩余:330.6s 窗口94/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:55.2s 剩余:0.0s
测试窗口770期: |████████████████████████████░░| 95.0% (95/100) 耗时:5234.0s 剩余:275.5s 窗口95/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:57.2s 剩余:0.0s
测试窗口770期: |████████████████████████████░░| 96.0% (96/100) 耗时:5291.2s 剩余:220.5s 窗口96/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:55.8s 剩余:0.0s
测试窗口770期: |█████████████████████████████░| 97.0% (97/100) 耗时:5347.0s 剩余:165.4s 窗口97/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:53.2s 剩余:0.0s
测试窗口770期: |█████████████████████████████░| 98.0% (98/100) 耗时:5400.3s 剩余:110.2s 窗口98/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:53.9s 剩余:0.0s
测试窗口770期: |█████████████████████████████░| 99.0% (99/100) 耗时:5454.2s 剩余:55.1s 窗口99/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:54.1s 剩余:0.0s
测试窗口770期: |██████████████████████████████| 100.0% (100/100) 耗时:5508.3s 剩余:0.0s 窗口100/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:56.6s 剩余:0.0s
测试窗口770期: |██████████████████████████████| 100.0% (100/100) 耗时:5565.0s 剩余:0.0s
周期770期: 成功率=8.2000% (测试2000次)
逆向分析进度: |███████████████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 30.0% (3/10) 耗时:8399.6s 剩余:19599.2s 测试周期:1240期运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:70.3s 剩余:0.0s
测试窗口1240期: |░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 2.0% (2/100) 耗时:70.3s 剩余:3444.7s 窗口2/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:71.0s 剩余:0.0s
测试窗口1240期: |░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 3.0% (3/100) 耗时:141.3s 剩余:4567.9s 窗口3/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:96.0s 剩余:0.0s
测试窗口1240期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 4.0% (4/100) 耗时:237.3s 剩余:5695.9s 窗口4/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:97.6s 剩余:0.0s
测试窗口1240期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 5.0% (5/100) 耗时:335.0s 剩余:6365.7s 窗口5/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.1s 剩余:0.0s
测试窗口1240期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 6.0% (6/100) 耗时:409.2s 剩余:6410.5s 窗口6/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:67.3s 剩余:0.0s
测试窗口1240期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 7.0% (7/100) 耗时:476.5s 剩余:6330.8s 窗口7/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.5s 剩余:0.0s
测试窗口1240期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 8.0% (8/100) 耗时:550.0s 剩余:6325.2s 窗口8/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:96.4s 剩余:0.0s
测试窗口1240期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 9.0% (9/100) 耗时:646.4s 剩余:6535.9s 窗口9/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:59.8s 剩余:0.0s
测试窗口1240期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 10.0% (10/100) 耗时:706.2s 剩余:6355.9s 窗口10/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:58.7s 剩余:0.0s
测试窗口1240期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 11.0% (11/100) 耗时:765.0s 剩余:6189.3s 窗口11/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:91.0s 剩余:0.0s
测试窗口1240期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 12.0% (12/100) 耗时:856.0s 剩余:6277.1s 窗口12/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:94.4s 剩余:0.0s
测试窗口1240期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 13.0% (13/100) 耗时:950.4s 剩余:6360.2s 窗口13/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:98.2s 剩余:0.0s
测试窗口1240期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 14.0% (14/100) 耗时:1048.6s 剩余:6441.4s 窗口14/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:97.6s 剩余:0.0s
测试窗口1240期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 15.0% (15/100) 耗时:1146.2s 剩余:6495.3s 窗口15/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:96.1s 剩余:0.0s
测试窗口1240期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 16.0% (16/100) 耗时:1242.4s 剩余:6522.5s 窗口16/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:84.9s 剩余:0.0s
测试窗口1240期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 17.0% (17/100) 耗时:1327.3s 剩余:6480.5s 窗口17/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:67.7s 剩余:0.0s
测试窗口1240期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 18.0% (18/100) 耗时:1395.0s 剩余:6355.2s 窗口18/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:83.0s 剩余:0.0s
测试窗口1240期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 19.0% (19/100) 耗时:1478.0s 剩余:6301.0s 窗口19/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:84.7s 剩余:0.0s
测试窗口1240期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 20.0% (20/100) 耗时:1562.7s 剩余:6250.8s 窗口20/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:81.4s 剩余:0.0s
测试窗口1240期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 21.0% (21/100) 耗时:1644.1s 剩余:6184.9s 窗口21/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:82.1s 剩余:0.0s
测试窗口1240期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 22.0% (22/100) 耗时:1726.2s 剩余:6120.2s 窗口22/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:84.2s 剩余:0.0s
测试窗口1240期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 23.0% (23/100) 耗时:1810.5s 剩余:6061.1s 窗口23/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.1s 剩余:0.0s
测试窗口1240期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 24.0% (24/100) 耗时:1885.6s 剩余:5971.0s 窗口24/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.7s 剩余:0.0s
测试窗口1240期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 25.0% (25/100) 耗时:1963.3s 剩余:5889.8s 窗口25/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:83.2s 剩余:0.0s
测试窗口1240期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 26.0% (26/100) 耗时:2046.5s 剩余:5824.6s 窗口26/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:115.2s 剩余:0.0s
测试窗口1240期: |████████░░░░░░░░░░░░░░░░░░░░░░| 27.0% (27/100) 耗时:2161.7s 剩余:5844.5s 窗口27/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:83.9s 剩余:0.0s
测试窗口1240期: |████████░░░░░░░░░░░░░░░░░░░░░░| 28.0% (28/100) 耗时:2245.6s 剩余:5774.5s 窗口28/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:94.9s 剩余:0.0s
测试窗口1240期: |████████░░░░░░░░░░░░░░░░░░░░░░| 29.0% (29/100) 耗时:2340.5s 剩余:5730.1s 窗口29/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:71.5s 剩余:0.0s
测试窗口1240期: |█████████░░░░░░░░░░░░░░░░░░░░░| 30.0% (30/100) 耗时:2412.0s 剩余:5627.9s 窗口30/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:67.3s 剩余:0.0s
测试窗口1240期: |█████████░░░░░░░░░░░░░░░░░░░░░| 31.0% (31/100) 耗时:2479.3s 剩余:5518.5s 窗口31/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:67.8s 剩余:0.0s
测试窗口1240期: |█████████░░░░░░░░░░░░░░░░░░░░░| 32.0% (32/100) 耗时:2547.1s 剩余:5412.6s 窗口32/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:103.6s 剩余:0.0s
测试窗口1240期: |█████████░░░░░░░░░░░░░░░░░░░░░| 33.0% (33/100) 耗时:2650.7s 剩余:5381.8s 窗口33/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:95.3s 剩余:0.0s
测试窗口1240期: |██████████░░░░░░░░░░░░░░░░░░░░| 34.0% (34/100) 耗时:2746.1s 剩余:5330.6s 窗口34/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:119.7s 剩余:0.0s
测试窗口1240期: |██████████░░░░░░░░░░░░░░░░░░░░| 35.0% (35/100) 耗时:2865.8s 剩余:5322.2s 窗口35/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:144.1s 剩余:0.0s
测试窗口1240期: |██████████░░░░░░░░░░░░░░░░░░░░| 36.0% (36/100) 耗时:3009.9s 剩余:5351.0s 窗口36/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:114.9s 剩余:0.0s
测试窗口1240期: |███████████░░░░░░░░░░░░░░░░░░░| 37.0% (37/100) 耗时:3124.9s 剩余:5320.7s 窗口37/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.3s 剩余:0.0s
测试窗口1240期: |███████████░░░░░░░░░░░░░░░░░░░| 38.0% (38/100) 耗时:3197.2s 剩余:5216.4s 窗口38/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:101.3s 剩余:0.0s
测试窗口1240期: |███████████░░░░░░░░░░░░░░░░░░░| 39.0% (39/100) 耗时:3298.5s 剩余:5159.1s 窗口39/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:119.6s 剩余:0.0s
测试窗口1240期: |████████████░░░░░░░░░░░░░░░░░░| 40.0% (40/100) 耗时:3418.1s 剩余:5127.2s 窗口40/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:102.5s 剩余:0.0s
测试窗口1240期: |████████████░░░░░░░░░░░░░░░░░░| 41.0% (41/100) 耗时:3520.6s 剩余:5066.2s 窗口41/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:86.7s 剩余:0.0s
测试窗口1240期: |████████████░░░░░░░░░░░░░░░░░░| 42.0% (42/100) 耗时:3607.2s 剩余:4981.4s 窗口42/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:82.3s 剩余:0.0s
测试窗口1240期: |████████████░░░░░░░░░░░░░░░░░░| 43.0% (43/100) 耗时:3689.5s 剩余:4890.8s 窗口43/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:84.2s 剩余:0.0s
测试窗口1240期: |█████████████░░░░░░░░░░░░░░░░░| 44.0% (44/100) 耗时:3773.7s 剩余:4802.9s 窗口44/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.9s 剩余:0.0s
测试窗口1240期: |█████████████░░░░░░░░░░░░░░░░░| 45.0% (45/100) 耗时:3849.6s 剩余:4705.1s 窗口45/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.1s 剩余:0.0s
测试窗口1240期: |█████████████░░░░░░░░░░░░░░░░░| 46.0% (46/100) 耗时:3921.7s 剩余:4603.8s 窗口46/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:81.9s 剩余:0.0s
测试窗口1240期: |██████████████░░░░░░░░░░░░░░░░| 47.0% (47/100) 耗时:4003.7s 剩余:4514.8s 窗口47/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:99.1s 剩余:0.0s
测试窗口1240期: |██████████████░░░░░░░░░░░░░░░░| 48.0% (48/100) 耗时:4102.8s 剩余:4444.7s 窗口48/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:85.0s 剩余:0.0s
测试窗口1240期: |██████████████░░░░░░░░░░░░░░░░| 49.0% (49/100) 耗时:4187.8s 剩余:4358.7s 窗口49/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:96.9s 剩余:0.0s
测试窗口1240期: |███████████████░░░░░░░░░░░░░░░| 50.0% (50/100) 耗时:4284.8s 剩余:4284.8s 窗口50/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:90.9s 剩余:0.0s
测试窗口1240期: |███████████████░░░░░░░░░░░░░░░| 51.0% (51/100) 耗时:4375.7s 剩余:4204.1s 窗口51/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:93.3s 剩余:0.0s
测试窗口1240期: |███████████████░░░░░░░░░░░░░░░| 52.0% (52/100) 耗时:4469.0s 剩余:4125.2s 窗口52/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:100.4s 剩余:0.0s
测试窗口1240期: |███████████████░░░░░░░░░░░░░░░| 53.0% (53/100) 耗时:4569.4s 剩余:4052.1s 窗口53/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:179.6s 剩余:0.0s
测试窗口1240期: |████████████████░░░░░░░░░░░░░░| 54.0% (54/100) 耗时:4748.9s 剩余:4045.4s 窗口54/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:148.9s 剩余:0.0s
测试窗口1240期: |████████████████░░░░░░░░░░░░░░| 55.0% (55/100) 耗时:4897.8s 剩余:4007.3s 窗口55/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:135.3s 剩余:0.0s
测试窗口1240期: |████████████████░░░░░░░░░░░░░░| 56.0% (56/100) 耗时:5033.1s 剩余:3954.6s 窗口56/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:63.7s 剩余:0.0s
测试窗口1240期: |█████████████████░░░░░░░░░░░░░| 57.0% (57/100) 耗时:5096.8s 剩余:3845.0s 窗口57/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:69.5s 剩余:0.0s
测试窗口1240期: |█████████████████░░░░░░░░░░░░░| 58.0% (58/100) 耗时:5166.4s 剩余:3741.2s 窗口58/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:121.6s 剩余:0.0s
测试窗口1240期: |█████████████████░░░░░░░░░░░░░| 59.0% (59/100) 耗时:5288.0s 剩余:3674.7s 窗口59/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:88.2s 剩余:0.0s
测试窗口1240期: |██████████████████░░░░░░░░░░░░| 60.0% (60/100) 耗时:5376.2s 剩余:3584.2s 窗口60/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:121.7s 剩余:0.0s
测试窗口1240期: |██████████████████░░░░░░░░░░░░| 61.0% (61/100) 耗时:5497.9s 剩余:3515.1s 窗口61/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:96.3s 剩余:0.0s
测试窗口1240期: |██████████████████░░░░░░░░░░░░| 62.0% (62/100) 耗时:5594.3s 剩余:3428.8s 窗口62/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:91.0s 剩余:0.0s
测试窗口1240期: |██████████████████░░░░░░░░░░░░| 63.0% (63/100) 耗时:5685.2s 剩余:3339.0s 窗口63/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:107.8s 剩余:0.0s
测试窗口1240期: |███████████████████░░░░░░░░░░░| 64.0% (64/100) 耗时:5793.0s 剩余:3258.6s 窗口64/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:126.6s 剩余:0.0s
测试窗口1240期: |███████████████████░░░░░░░░░░░| 65.0% (65/100) 耗时:5919.7s 剩余:3187.5s 窗口65/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:85.2s 剩余:0.0s
测试窗口1240期: |███████████████████░░░░░░░░░░░| 66.0% (66/100) 耗时:6004.9s 剩余:3093.4s 窗口66/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:51.2s 剩余:0.0s
测试窗口1240期: |████████████████████░░░░░░░░░░| 67.0% (67/100) 耗时:6056.0s 剩余:2982.8s 窗口67/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:51.7s 剩余:0.0s
测试窗口1240期: |████████████████████░░░░░░░░░░| 68.0% (68/100) 耗时:6107.7s 剩余:2874.2s 窗口68/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:53.1s 剩余:0.0s
测试窗口1240期: |████████████████████░░░░░░░░░░| 69.0% (69/100) 耗时:6160.8s 剩余:2767.9s 窗口69/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:52.1s 剩余:0.0s
测试窗口1240期: |█████████████████████░░░░░░░░░| 70.0% (70/100) 耗时:6212.9s 剩余:2662.7s 窗口70/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:118.6s 剩余:0.0s
测试窗口1240期: |█████████████████████░░░░░░░░░| 71.0% (71/100) 耗时:6331.6s 剩余:2586.1s 窗口71/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:110.4s 剩余:0.0s
测试窗口1240期: |█████████████████████░░░░░░░░░| 72.0% (72/100) 耗时:6441.9s 剩余:2505.2s 窗口72/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:102.2s 剩余:0.0s
测试窗口1240期: |█████████████████████░░░░░░░░░| 73.0% (73/100) 耗时:6544.2s 剩余:2420.4s 窗口73/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:97.8s 剩余:0.0s
测试窗口1240期: |██████████████████████░░░░░░░░| 74.0% (74/100) 耗时:6641.9s 剩余:2333.6s 窗口74/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:86.9s 剩余:0.0s
测试窗口1240期: |██████████████████████░░░░░░░░| 75.0% (75/100) 耗时:6728.8s 剩余:2242.9s 窗口75/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:94.8s 剩余:0.0s
测试窗口1240期: |██████████████████████░░░░░░░░| 76.0% (76/100) 耗时:6823.6s 剩余:2154.8s 窗口76/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:103.7s 剩余:0.0s
测试窗口1240期: |███████████████████████░░░░░░░| 77.0% (77/100) 耗时:6927.4s 剩余:2069.2s 窗口77/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:94.1s 剩余:0.0s
测试窗口1240期: |███████████████████████░░░░░░░| 78.0% (78/100) 耗时:7021.5s 剩余:1980.4s 窗口78/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:133.9s 剩余:0.0s
测试窗口1240期: |███████████████████████░░░░░░░| 79.0% (79/100) 耗时:7155.4s 剩余:1902.1s 窗口79/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:87.7s 剩余:0.0s
测试窗口1240期: |████████████████████████░░░░░░| 80.0% (80/100) 耗时:7243.0s 剩余:1810.8s 窗口80/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:71.5s 剩余:0.0s
测试窗口1240期: |████████████████████████░░░░░░| 81.0% (81/100) 耗时:7314.6s 剩余:1715.8s 窗口81/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:99.6s 剩余:0.0s
测试窗口1240期: |████████████████████████░░░░░░| 82.0% (82/100) 耗时:7414.2s 剩余:1627.5s 窗口82/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:87.0s 剩余:0.0s
测试窗口1240期: |████████████████████████░░░░░░| 83.0% (83/100) 耗时:7501.2s 剩余:1536.4s 窗口83/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:88.8s 剩余:0.0s
测试窗口1240期: |█████████████████████████░░░░░| 84.0% (84/100) 耗时:7590.0s 剩余:1445.7s 窗口84/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:106.9s 剩余:0.0s
测试窗口1240期: |█████████████████████████░░░░░| 85.0% (85/100) 耗时:7696.8s 剩余:1358.3s 窗口85/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:117.8s 剩余:0.0s
测试窗口1240期: |█████████████████████████░░░░░| 86.0% (86/100) 耗时:7814.7s 剩余:1272.2s 窗口86/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:97.5s 剩余:0.0s
测试窗口1240期: |██████████████████████████░░░░| 87.0% (87/100) 耗时:7912.2s 剩余:1182.3s 窗口87/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:85.2s 剩余:0.0s
测试窗口1240期: |██████████████████████████░░░░| 88.0% (88/100) 耗时:7997.4s 剩余:1090.6s 窗口88/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:109.2s 剩余:0.0s
测试窗口1240期: |██████████████████████████░░░░| 89.0% (89/100) 耗时:8106.6s 剩余:1001.9s 窗口89/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:66.1s 剩余:0.0s
测试窗口1240期: |███████████████████████████░░░| 90.0% (90/100) 耗时:8172.7s 剩余:908.1s 窗口90/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:66.9s 剩余:0.0s
测试窗口1240期: |███████████████████████████░░░| 91.0% (91/100) 耗时:8239.5s 剩余:814.9s 窗口91/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:66.3s 剩余:0.0s
测试窗口1240期: |███████████████████████████░░░| 92.0% (92/100) 耗时:8305.8s 剩余:722.2s 窗口92/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:68.3s 剩余:0.0s
测试窗口1240期: |███████████████████████████░░░| 93.0% (93/100) 耗时:8374.1s 剩余:630.3s 窗口93/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:69.7s 剩余:0.0s
测试窗口1240期: |████████████████████████████░░| 94.0% (94/100) 耗时:8443.8s 剩余:539.0s 窗口94/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:102.5s 剩余:0.0s
测试窗口1240期: |████████████████████████████░░| 95.0% (95/100) 耗时:8546.6s 剩余:449.8s 窗口95/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:98.9s 剩余:0.0s
测试窗口1240期: |████████████████████████████░░| 96.0% (96/100) 耗时:8645.4s 剩余:360.2s 窗口96/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:87.2s 剩余:0.0s
测试窗口1240期: |█████████████████████████████░| 97.0% (97/100) 耗时:8732.6s 剩余:270.1s 窗口97/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:88.0s 剩余:0.0s
测试窗口1240期: |█████████████████████████████░| 98.0% (98/100) 耗时:8820.6s 剩余:180.0s 窗口98/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:103.7s 剩余:0.0s
测试窗口1240期: |█████████████████████████████░| 99.0% (99/100) 耗时:8924.3s 剩余:90.1s 窗口99/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:101.3s 剩余:0.0s
测试窗口1240期: |██████████████████████████████| 100.0% (100/100) 耗时:9025.6s 剩余:0.0s 窗口100/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:134.7s 剩余:0.0s
测试窗口1240期: |██████████████████████████████| 100.0% (100/100) 耗时:9160.3s 剩余:0.0s
周期1240期: 成功率=8.4000% (测试2000次)
逆向分析进度: |████████████████████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 40.0% (4/10) 耗时:17560.4s 剩余:26340.6s 测试周期:1710期运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:112.6s 剩余:0.0s
测试窗口1710期: |░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 2.0% (2/100) 耗时:112.7s 剩余:5520.9s 窗口2/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.2s 剩余:0.0s
测试窗口1710期: |░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 3.0% (3/100) 耗时:188.8s 剩余:6105.9s 窗口3/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:62.4s 剩余:0.0s
测试窗口1710期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 4.0% (4/100) 耗时:251.2s 剩余:6029.1s 窗口4/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:62.4s 剩余:0.0s
测试窗口1710期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 5.0% (5/100) 耗时:313.6s 剩余:5957.8s 窗口5/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:64.4s 剩余:0.0s
测试窗口1710期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 6.0% (6/100) 耗时:377.9s 剩余:5920.9s 窗口6/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:85.8s 剩余:0.0s
测试窗口1710期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 7.0% (7/100) 耗时:463.7s 剩余:6160.8s 窗口7/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:110.7s 剩余:0.0s
测试窗口1710期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 8.0% (8/100) 耗时:574.4s 剩余:6606.0s 窗口8/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:132.4s 剩余:0.0s
测试窗口1710期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 9.0% (9/100) 耗时:706.9s 剩余:7147.6s 窗口9/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:159.2s 剩余:0.0s
测试窗口1710期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 10.0% (10/100) 耗时:866.1s 剩余:7794.9s 窗口10/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:141.9s 剩余:0.0s
测试窗口1710期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 11.0% (11/100) 耗时:1008.1s 剩余:8156.0s 窗口11/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:117.8s 剩余:0.0s
测试窗口1710期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 12.0% (12/100) 耗时:1125.8s 剩余:8256.2s 窗口12/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:123.1s 剩余:0.0s
测试窗口1710期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 13.0% (13/100) 耗时:1248.9s 剩余:8358.2s 窗口13/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:143.8s 剩余:0.0s
测试窗口1710期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 14.0% (14/100) 耗时:1392.7s 剩余:8555.1s 窗口14/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:109.9s 剩余:0.0s
测试窗口1710期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 15.0% (15/100) 耗时:1502.6s 剩余:8514.6s 窗口15/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:103.2s 剩余:0.0s
测试窗口1710期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 16.0% (16/100) 耗时:1605.8s 剩余:8430.4s 窗口16/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:92.9s 剩余:0.0s
测试窗口1710期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 17.0% (17/100) 耗时:1698.7s 剩余:8293.7s 窗口17/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.3s 剩余:0.0s
测试窗口1710期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 18.0% (18/100) 耗时:1775.0s 剩余:8086.2s 窗口18/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:92.5s 剩余:0.0s
测试窗口1710期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 19.0% (19/100) 耗时:1867.5s 剩余:7961.6s 窗口19/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.3s 剩余:0.0s
测试窗口1710期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 20.0% (20/100) 耗时:1943.8s 剩余:7775.3s 窗口20/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.4s 剩余:0.0s
测试窗口1710期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 21.0% (21/100) 耗时:2018.2s 剩余:7592.2s 窗口21/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:63.5s 剩余:0.0s
测试窗口1710期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 22.0% (22/100) 耗时:2081.7s 剩余:7380.5s 窗口22/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:68.7s 剩余:0.0s
测试窗口1710期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 23.0% (23/100) 耗时:2150.4s 剩余:7199.2s 窗口23/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:67.1s 剩余:0.0s
测试窗口1710期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 24.0% (24/100) 耗时:2217.5s 剩余:7022.2s 窗口24/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.3s 剩余:0.0s
测试窗口1710期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 25.0% (25/100) 耗时:2291.8s 剩余:6875.5s 窗口25/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.8s 剩余:0.0s
测试窗口1710期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 26.0% (26/100) 耗时:2366.7s 剩余:6736.1s 窗口26/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.5s 剩余:0.0s
测试窗口1710期: |████████░░░░░░░░░░░░░░░░░░░░░░| 27.0% (27/100) 耗时:2442.2s 剩余:6603.0s 窗口27/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:90.3s 剩余:0.0s
测试窗口1710期: |████████░░░░░░░░░░░░░░░░░░░░░░| 28.0% (28/100) 耗时:2532.5s 剩余:6512.2s 窗口28/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:81.3s 剩余:0.0s
测试窗口1710期: |████████░░░░░░░░░░░░░░░░░░░░░░| 29.0% (29/100) 耗时:2613.9s 剩余:6399.6s 窗口29/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:84.1s 剩余:0.0s
测试窗口1710期: |█████████░░░░░░░░░░░░░░░░░░░░░| 30.0% (30/100) 耗时:2698.1s 剩余:6295.5s 窗口30/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:82.0s 剩余:0.0s
测试窗口1710期: |█████████░░░░░░░░░░░░░░░░░░░░░| 31.0% (31/100) 耗时:2780.0s 剩余:6187.8s 窗口31/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:88.3s 剩余:0.0s
测试窗口1710期: |█████████░░░░░░░░░░░░░░░░░░░░░| 32.0% (32/100) 耗时:2868.4s 剩余:6095.3s 窗口32/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:107.5s 剩余:0.0s
测试窗口1710期: |█████████░░░░░░░░░░░░░░░░░░░░░| 33.0% (33/100) 耗时:2975.9s 剩余:6041.9s 窗口33/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:131.8s 剩余:0.0s
测试窗口1710期: |██████████░░░░░░░░░░░░░░░░░░░░| 34.0% (34/100) 耗时:3107.8s 剩余:6032.7s 窗口34/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:104.1s 剩余:0.0s
测试窗口1710期: |██████████░░░░░░░░░░░░░░░░░░░░| 35.0% (35/100) 耗时:3211.8s 剩余:5964.8s 窗口35/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:103.6s 剩余:0.0s
测试窗口1710期: |██████████░░░░░░░░░░░░░░░░░░░░| 36.0% (36/100) 耗时:3315.4s 剩余:5894.0s 窗口36/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:120.6s 剩余:0.0s
测试窗口1710期: |███████████░░░░░░░░░░░░░░░░░░░| 37.0% (37/100) 耗时:3436.0s 剩余:5850.5s 窗口37/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:124.2s 剩余:0.0s
测试窗口1710期: |███████████░░░░░░░░░░░░░░░░░░░| 38.0% (38/100) 耗时:3560.2s 剩余:5808.8s 窗口38/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:96.2s 剩余:0.0s
测试窗口1710期: |███████████░░░░░░░░░░░░░░░░░░░| 39.0% (39/100) 耗时:3656.4s 剩余:5719.0s 窗口39/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:107.8s 剩余:0.0s
测试窗口1710期: |████████████░░░░░░░░░░░░░░░░░░| 40.0% (40/100) 耗时:3764.3s 剩余:5646.4s 窗口40/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:88.9s 剩余:0.0s
测试窗口1710期: |████████████░░░░░░░░░░░░░░░░░░| 41.0% (41/100) 耗时:3853.2s 剩余:5544.8s 窗口41/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:86.4s 剩余:0.0s
测试窗口1710期: |████████████░░░░░░░░░░░░░░░░░░| 42.0% (42/100) 耗时:3939.6s 剩余:5440.4s 窗口42/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:85.8s 剩余:0.0s
测试窗口1710期: |████████████░░░░░░░░░░░░░░░░░░| 43.0% (43/100) 耗时:4025.4s 剩余:5336.0s 窗口43/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.8s 剩余:0.0s
测试窗口1710期: |█████████████░░░░░░░░░░░░░░░░░| 44.0% (44/100) 耗时:4103.1s 剩余:5222.2s 窗口44/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:92.2s 剩余:0.0s
测试窗口1710期: |█████████████░░░░░░░░░░░░░░░░░| 45.0% (45/100) 耗时:4195.3s 剩余:5127.6s 窗口45/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:89.3s 剩余:0.0s
测试窗口1710期: |█████████████░░░░░░░░░░░░░░░░░| 46.0% (46/100) 耗时:4284.7s 剩余:5029.8s 窗口46/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:94.1s 剩余:0.0s
测试窗口1710期: |██████████████░░░░░░░░░░░░░░░░| 47.0% (47/100) 耗时:4378.8s 剩余:4937.8s 窗口47/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:89.1s 剩余:0.0s
测试窗口1710期: |██████████████░░░░░░░░░░░░░░░░| 48.0% (48/100) 耗时:4467.9s 剩余:4840.2s 窗口48/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:85.3s 剩余:0.0s
测试窗口1710期: |██████████████░░░░░░░░░░░░░░░░| 49.0% (49/100) 耗时:4553.2s 剩余:4739.1s 窗口49/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:97.0s 剩余:0.0s
测试窗口1710期: |███████████████░░░░░░░░░░░░░░░| 50.0% (50/100) 耗时:4650.3s 剩余:4650.3s 窗口50/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:100.9s 剩余:0.0s
测试窗口1710期: |███████████████░░░░░░░░░░░░░░░| 51.0% (51/100) 耗时:4751.2s 剩余:4564.8s 窗口51/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:98.8s 剩余:0.0s
测试窗口1710期: |███████████████░░░░░░░░░░░░░░░| 52.0% (52/100) 耗时:4850.0s 剩余:4476.9s 窗口52/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:99.8s 剩余:0.0s
测试窗口1710期: |███████████████░░░░░░░░░░░░░░░| 53.0% (53/100) 耗时:4949.8s 剩余:4389.4s 窗口53/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:91.4s 剩余:0.0s
测试窗口1710期: |████████████████░░░░░░░░░░░░░░| 54.0% (54/100) 耗时:5041.2s 剩余:4294.3s 窗口54/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:102.7s 剩余:0.0s
测试窗口1710期: |████████████████░░░░░░░░░░░░░░| 55.0% (55/100) 耗时:5143.9s 剩余:4208.7s 窗口55/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:95.5s 剩余:0.0s
测试窗口1710期: |████████████████░░░░░░░░░░░░░░| 56.0% (56/100) 耗时:5239.5s 剩余:4116.7s 窗口56/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:90.0s 剩余:0.0s
测试窗口1710期: |█████████████████░░░░░░░░░░░░░| 57.0% (57/100) 耗时:5329.4s 剩余:4020.5s 窗口57/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:96.5s 剩余:0.0s
测试窗口1710期: |█████████████████░░░░░░░░░░░░░| 58.0% (58/100) 耗时:5425.9s 剩余:3929.1s 窗口58/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:94.6s 剩余:0.0s
测试窗口1710期: |█████████████████░░░░░░░░░░░░░| 59.0% (59/100) 耗时:5520.5s 剩余:3836.3s 窗口59/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:103.3s 剩余:0.0s
测试窗口1710期: |██████████████████░░░░░░░░░░░░| 60.0% (60/100) 耗时:5623.8s 剩余:3749.2s 窗口60/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:106.4s 剩余:0.0s
测试窗口1710期: |██████████████████░░░░░░░░░░░░| 61.0% (61/100) 耗时:5730.2s 剩余:3663.6s 窗口61/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:98.3s 剩余:0.0s
测试窗口1710期: |██████████████████░░░░░░░░░░░░| 62.0% (62/100) 耗时:5828.6s 剩余:3572.4s 窗口62/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:100.5s 剩余:0.0s
测试窗口1710期: |██████████████████░░░░░░░░░░░░| 63.0% (63/100) 耗时:5929.1s 剩余:3482.2s 窗口63/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:102.1s 剩余:0.0s
测试窗口1710期: |███████████████████░░░░░░░░░░░| 64.0% (64/100) 耗时:6031.3s 剩余:3392.6s 窗口64/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:100.2s 剩余:0.0s
测试窗口1710期: |███████████████████░░░░░░░░░░░| 65.0% (65/100) 耗时:6131.5s 剩余:3301.6s 窗口65/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:96.6s 剩余:0.0s
测试窗口1710期: |███████████████████░░░░░░░░░░░| 66.0% (66/100) 耗时:6228.6s 剩余:3208.7s 窗口66/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:116.4s 剩余:0.0s
测试窗口1710期: |████████████████████░░░░░░░░░░| 67.0% (67/100) 耗时:6345.0s 剩余:3125.2s 窗口67/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:135.9s 剩余:0.0s
测试窗口1710期: |████████████████████░░░░░░░░░░| 68.0% (68/100) 耗时:6481.0s 剩余:3049.9s 窗口68/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:127.9s 剩余:0.0s
测试窗口1710期: |████████████████████░░░░░░░░░░| 69.0% (69/100) 耗时:6609.0s 剩余:2969.2s 窗口69/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:78.7s 剩余:0.0s
测试窗口1710期: |█████████████████████░░░░░░░░░| 70.0% (70/100) 耗时:6687.7s 剩余:2866.2s 窗口70/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:108.2s 剩余:0.0s
测试窗口1710期: |█████████████████████░░░░░░░░░| 71.0% (71/100) 耗时:6796.1s 剩余:2775.9s 窗口71/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:120.1s 剩余:0.0s
测试窗口1710期: |█████████████████████░░░░░░░░░| 72.0% (72/100) 耗时:6916.2s 剩余:2689.6s 窗口72/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:107.2s 剩余:0.0s
测试窗口1710期: |█████████████████████░░░░░░░░░| 73.0% (73/100) 耗时:7023.5s 剩余:2597.7s 窗口73/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:108.0s 剩余:0.0s
测试窗口1710期: |██████████████████████░░░░░░░░| 74.0% (74/100) 耗时:7131.5s 剩余:2505.7s 窗口74/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:118.3s 剩余:0.0s
测试窗口1710期: |██████████████████████░░░░░░░░| 75.0% (75/100) 耗时:7249.7s 剩余:2416.6s 窗口75/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:146.9s 剩余:0.0s
测试窗口1710期: |██████████████████████░░░░░░░░| 76.0% (76/100) 耗时:7396.7s 剩余:2335.8s 窗口76/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:147.0s 剩余:0.0s
测试窗口1710期: |███████████████████████░░░░░░░| 77.0% (77/100) 耗时:7543.7s 剩余:2253.3s 窗口77/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:148.2s 剩余:0.0s
测试窗口1710期: |███████████████████████░░░░░░░| 78.0% (78/100) 耗时:7691.8s 剩余:2169.5s 窗口78/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:140.8s 剩余:0.0s
测试窗口1710期: |███████████████████████░░░░░░░| 79.0% (79/100) 耗时:7832.6s 剩余:2082.1s 窗口79/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:142.5s 剩余:0.0s
测试窗口1710期: |████████████████████████░░░░░░| 80.0% (80/100) 耗时:7975.1s 剩余:1993.8s 窗口80/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:137.4s 剩余:0.0s
测试窗口1710期: |████████████████████████░░░░░░| 81.0% (81/100) 耗时:8112.5s 剩余:1902.9s 窗口81/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:140.6s 剩余:0.0s
测试窗口1710期: |████████████████████████░░░░░░| 82.0% (82/100) 耗时:8253.2s 剩余:1811.7s 窗口82/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:134.8s 剩余:0.0s
测试窗口1710期: |████████████████████████░░░░░░| 83.0% (83/100) 耗时:8387.9s 剩余:1718.0s 窗口83/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:144.6s 剩余:0.0s
测试窗口1710期: |█████████████████████████░░░░░| 84.0% (84/100) 耗时:8532.6s 剩余:1625.3s 窗口84/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:150.1s 剩余:0.0s
测试窗口1710期: |█████████████████████████░░░░░| 85.0% (85/100) 耗时:8682.7s 剩余:1532.2s 窗口85/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:149.2s 剩余:0.0s
测试窗口1710期: |█████████████████████████░░░░░| 86.0% (86/100) 耗时:8831.9s 剩余:1437.7s 窗口86/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:163.4s 剩余:0.0s
测试窗口1710期: |██████████████████████████░░░░| 87.0% (87/100) 耗时:8995.2s 剩余:1344.1s 窗口87/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:160.4s 剩余:0.0s
测试窗口1710期: |██████████████████████████░░░░| 88.0% (88/100) 耗时:9155.7s 剩余:1248.5s 窗口88/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:194.4s 剩余:0.0s
测试窗口1710期: |██████████████████████████░░░░| 89.0% (89/100) 耗时:9350.4s 剩余:1155.7s 窗口89/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:184.2s 剩余:0.0s
测试窗口1710期: |███████████████████████████░░░| 90.0% (90/100) 耗时:9534.6s 剩余:1059.4s 窗口90/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:207.5s 剩余:0.0s
测试窗口1710期: |███████████████████████████░░░| 91.0% (91/100) 耗时:9742.4s 剩余:963.5s 窗口91/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:127.3s 剩余:0.0s
测试窗口1710期: |███████████████████████████░░░| 92.0% (92/100) 耗时:9869.7s 剩余:858.2s 窗口92/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:68.0s 剩余:0.0s
测试窗口1710期: |███████████████████████████░░░| 93.0% (93/100) 耗时:9937.7s 剩余:748.0s 窗口93/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:84.7s 剩余:0.0s
测试窗口1710期: |████████████████████████████░░| 94.0% (94/100) 耗时:10022.3s 剩余:639.7s 窗口94/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:63.9s 剩余:0.0s
测试窗口1710期: |████████████████████████████░░| 95.0% (95/100) 耗时:10086.3s 剩余:530.9s 窗口95/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:92.4s 剩余:0.0s
测试窗口1710期: |████████████████████████████░░| 96.0% (96/100) 耗时:10178.6s 剩余:424.1s 窗口96/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:93.1s 剩余:0.0s
测试窗口1710期: |█████████████████████████████░| 97.0% (97/100) 耗时:10271.7s 剩余:317.7s 窗口97/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:62.8s 剩余:0.0s
测试窗口1710期: |█████████████████████████████░| 98.0% (98/100) 耗时:10334.5s 剩余:210.9s 窗口98/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:64.5s 剩余:0.0s
测试窗口1710期: |█████████████████████████████░| 99.0% (99/100) 耗时:10399.1s 剩余:105.0s 窗口99/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:70.0s 剩余:0.0s
测试窗口1710期: |██████████████████████████████| 100.0% (100/100) 耗时:10469.0s 剩余:0.0s 窗口100/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:78.5s 剩余:0.0s
测试窗口1710期: |██████████████████████████████| 100.0% (100/100) 耗时:10547.5s 剩余:0.0s
周期1710期: 成功率=8.8500% (测试2000次)
逆向分析进度: |█████████████████████████░░░░░░░░░░░░░░░░░░░░░░░░░| 50.0% (5/10) 耗时:28107.9s 剩余:28107.9s 测试周期:2180期运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:96.5s 剩余:0.0s
测试窗口2180期: |░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 2.0% (2/100) 耗时:96.5s 剩余:4726.9s 窗口2/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:126.9s 剩余:0.0s
测试窗口2180期: |░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 3.0% (3/100) 耗时:223.3s 剩余:7221.6s 窗口3/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:170.2s 剩余:0.0s
测试窗口2180期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 4.0% (4/100) 耗时:393.5s 剩余:9444.9s 窗口4/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:78.1s 剩余:0.0s
测试窗口2180期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 5.0% (5/100) 耗时:471.7s 剩余:8961.4s 窗口5/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.2s 剩余:0.0s
测试窗口2180期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 6.0% (6/100) 耗时:551.8s 剩余:8645.0s 窗口6/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:118.1s 剩余:0.0s
测试窗口2180期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 7.0% (7/100) 耗时:670.0s 剩余:8901.8s 窗口7/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:87.0s 剩余:0.0s
测试窗口2180期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 8.0% (8/100) 耗时:757.1s 剩余:8706.1s 窗口8/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.7s 剩余:0.0s
测试窗口2180期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 9.0% (9/100) 耗时:837.7s 剩余:8470.2s 窗口9/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.8s 剩余:0.0s
测试窗口2180期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 10.0% (10/100) 耗时:912.5s 剩余:8212.9s 窗口10/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:68.7s 剩余:0.0s
测试窗口2180期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 11.0% (11/100) 耗时:981.2s 剩余:7939.1s 窗口11/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:85.4s 剩余:0.0s
测试窗口2180期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 12.0% (12/100) 耗时:1066.6s 剩余:7822.1s 窗口12/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:116.2s 剩余:0.0s
测试窗口2180期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 13.0% (13/100) 耗时:1182.8s 剩余:7915.7s 窗口13/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.2s 剩余:0.0s
测试窗口2180期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 14.0% (14/100) 耗时:1263.0s 剩余:7758.4s 窗口14/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.1s 剩余:0.0s
测试窗口2180期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 15.0% (15/100) 耗时:1338.1s 剩余:7582.3s 窗口15/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.9s 剩余:0.0s
测试窗口2180期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 16.0% (16/100) 耗时:1412.0s 剩余:7413.1s 窗口16/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:118.5s 剩余:0.0s
测试窗口2180期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 17.0% (17/100) 耗时:1530.6s 剩余:7472.8s 窗口17/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.8s 剩余:0.0s
测试窗口2180期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 18.0% (18/100) 耗时:1604.4s 剩余:7308.9s 窗口18/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.8s 剩余:0.0s
测试窗口2180期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 19.0% (19/100) 耗时:1678.2s 剩余:7154.4s 窗口19/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:81.8s 剩余:0.0s
测试窗口2180期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 20.0% (20/100) 耗时:1760.0s 剩余:7040.2s 窗口20/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:101.8s 剩余:0.0s
测试窗口2180期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 21.0% (21/100) 耗时:1861.8s 剩余:7003.9s 窗口21/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:95.2s 剩余:0.0s
测试窗口2180期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 22.0% (22/100) 耗时:1957.0s 剩余:6938.5s 窗口22/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:92.7s 剩余:0.0s
测试窗口2180期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 23.0% (23/100) 耗时:2049.7s 剩余:6862.2s 窗口23/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:92.3s 剩余:0.0s
测试窗口2180期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 24.0% (24/100) 耗时:2142.0s 剩余:6783.1s 窗口24/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:90.2s 剩余:0.0s
测试窗口2180期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 25.0% (25/100) 耗时:2232.3s 剩余:6696.8s 窗口25/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.5s 剩余:0.0s
测试窗口2180期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 26.0% (26/100) 耗时:2307.8s 剩余:6568.4s 窗口26/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.8s 剩余:0.0s
测试窗口2180期: |████████░░░░░░░░░░░░░░░░░░░░░░| 27.0% (27/100) 耗时:2383.6s 剩余:6444.5s 窗口27/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.1s 剩余:0.0s
测试窗口2180期: |████████░░░░░░░░░░░░░░░░░░░░░░| 28.0% (28/100) 耗时:2459.7s 剩余:6325.0s 窗口28/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.0s 剩余:0.0s
测试窗口2180期: |████████░░░░░░░░░░░░░░░░░░░░░░| 29.0% (29/100) 耗时:2535.7s 剩余:6208.1s 窗口29/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.6s 剩余:0.0s
测试窗口2180期: |█████████░░░░░░░░░░░░░░░░░░░░░| 30.0% (30/100) 耗时:2611.3s 剩余:6093.1s 窗口30/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.7s 剩余:0.0s
测试窗口2180期: |█████████░░░░░░░░░░░░░░░░░░░░░| 31.0% (31/100) 耗时:2687.0s 剩余:5980.7s 窗口31/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.4s 剩余:0.0s
测试窗口2180期: |█████████░░░░░░░░░░░░░░░░░░░░░| 32.0% (32/100) 耗时:2763.4s 剩余:5872.3s 窗口32/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.0s 剩余:0.0s
测试窗口2180期: |█████████░░░░░░░░░░░░░░░░░░░░░| 33.0% (33/100) 耗时:2837.4s 剩余:5760.8s 窗口33/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.4s 剩余:0.0s
测试窗口2180期: |██████████░░░░░░░░░░░░░░░░░░░░| 34.0% (34/100) 耗时:2909.8s 剩余:5648.5s 窗口34/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.6s 剩余:0.0s
测试窗口2180期: |██████████░░░░░░░░░░░░░░░░░░░░| 35.0% (35/100) 耗时:2983.4s 剩余:5540.7s 窗口35/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.8s 剩余:0.0s
测试窗口2180期: |██████████░░░░░░░░░░░░░░░░░░░░| 36.0% (36/100) 耗时:3056.3s 剩余:5433.4s 窗口36/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.0s 剩余:0.0s
测试窗口2180期: |███████████░░░░░░░░░░░░░░░░░░░| 37.0% (37/100) 耗时:3129.3s 剩余:5328.2s 窗口37/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.1s 剩余:0.0s
测试窗口2180期: |███████████░░░░░░░░░░░░░░░░░░░| 38.0% (38/100) 耗时:3202.4s 剩余:5224.9s 窗口38/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.3s 剩余:0.0s
测试窗口2180期: |███████████░░░░░░░░░░░░░░░░░░░| 39.0% (39/100) 耗时:3275.6s 剩余:5123.4s 窗口39/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.6s 剩余:0.0s
测试窗口2180期: |████████████░░░░░░░░░░░░░░░░░░| 40.0% (40/100) 耗时:3348.2s 剩余:5022.3s 窗口40/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.7s 剩余:0.0s
测试窗口2180期: |████████████░░░░░░░░░░░░░░░░░░| 41.0% (41/100) 耗时:3421.0s 剩余:4922.9s 窗口41/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.7s 剩余:0.0s
测试窗口2180期: |████████████░░░░░░░░░░░░░░░░░░| 42.0% (42/100) 耗时:3493.7s 剩余:4824.6s 窗口42/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.9s 剩余:0.0s
测试窗口2180期: |████████████░░░░░░░░░░░░░░░░░░| 43.0% (43/100) 耗时:3566.5s 剩余:4727.7s 窗口43/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.6s 剩余:0.0s
测试窗口2180期: |█████████████░░░░░░░░░░░░░░░░░| 44.0% (44/100) 耗时:3639.1s 剩余:4631.6s 窗口44/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.4s 剩余:0.0s
测试窗口2180期: |█████████████░░░░░░░░░░░░░░░░░| 45.0% (45/100) 耗时:3712.5s 剩余:4537.6s 窗口45/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.7s 剩余:0.0s
测试窗口2180期: |█████████████░░░░░░░░░░░░░░░░░| 46.0% (46/100) 耗时:3786.2s 剩余:4444.7s 窗口46/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.0s 剩余:0.0s
测试窗口2180期: |██████████████░░░░░░░░░░░░░░░░| 47.0% (47/100) 耗时:3859.2s 剩余:4351.9s 窗口47/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:71.8s 剩余:0.0s
测试窗口2180期: |██████████████░░░░░░░░░░░░░░░░| 48.0% (48/100) 耗时:3931.1s 剩余:4258.6s 窗口48/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.0s 剩余:0.0s
测试窗口2180期: |██████████████░░░░░░░░░░░░░░░░| 49.0% (49/100) 耗时:4003.1s 剩余:4166.4s 窗口49/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.1s 剩余:0.0s
测试窗口2180期: |███████████████░░░░░░░░░░░░░░░| 50.0% (50/100) 耗时:4075.1s 剩余:4075.1s 窗口50/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.3s 剩余:0.0s
测试窗口2180期: |███████████████░░░░░░░░░░░░░░░| 51.0% (51/100) 耗时:4147.4s 剩余:3984.8s 窗口51/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.3s 剩余:0.0s
测试窗口2180期: |███████████████░░░░░░░░░░░░░░░| 52.0% (52/100) 耗时:4219.8s 剩余:3895.2s 窗口52/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.2s 剩余:0.0s
测试窗口2180期: |███████████████░░░░░░░░░░░░░░░| 53.0% (53/100) 耗时:4293.0s 剩余:3807.0s 窗口53/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.9s 剩余:0.0s
测试窗口2180期: |████████████████░░░░░░░░░░░░░░| 54.0% (54/100) 耗时:4367.0s 剩余:3720.0s 窗口54/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.7s 剩余:0.0s
测试窗口2180期: |████████████████░░░░░░░░░░░░░░| 55.0% (55/100) 耗时:4440.7s 剩余:3633.3s 窗口55/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.7s 剩余:0.0s
测试窗口2180期: |████████████████░░░░░░░░░░░░░░| 56.0% (56/100) 耗时:4514.3s 剩余:3547.0s 窗口56/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.3s 剩余:0.0s
测试窗口2180期: |█████████████████░░░░░░░░░░░░░| 57.0% (57/100) 耗时:4587.6s 剩余:3460.8s 窗口57/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.4s 剩余:0.0s
测试窗口2180期: |█████████████████░░░░░░░░░░░░░| 58.0% (58/100) 耗时:4661.1s 剩余:3375.2s 窗口58/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.5s 剩余:0.0s
测试窗口2180期: |█████████████████░░░░░░░░░░░░░| 59.0% (59/100) 耗时:4734.5s 剩余:3290.1s 窗口59/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.9s 剩余:0.0s
测试窗口2180期: |██████████████████░░░░░░░░░░░░| 60.0% (60/100) 耗时:4807.4s 剩余:3205.0s 窗口60/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:72.7s 剩余:0.0s
测试窗口2180期: |██████████████████░░░░░░░░░░░░| 61.0% (61/100) 耗时:4880.2s 剩余:3120.1s 窗口61/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.0s 剩余:0.0s
测试窗口2180期: |██████████████████░░░░░░░░░░░░| 62.0% (62/100) 耗时:4953.2s 剩余:3035.8s 窗口62/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.1s 剩余:0.0s
测试窗口2180期: |██████████████████░░░░░░░░░░░░| 63.0% (63/100) 耗时:5026.3s 剩余:2952.0s 窗口63/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.1s 剩余:0.0s
测试窗口2180期: |███████████████████░░░░░░░░░░░| 64.0% (64/100) 耗时:5099.4s 剩余:2868.4s 窗口64/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.4s 剩余:0.0s
测试窗口2180期: |███████████████████░░░░░░░░░░░| 65.0% (65/100) 耗时:5172.9s 剩余:2785.4s 窗口65/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.4s 剩余:0.0s
测试窗口2180期: |███████████████████░░░░░░░░░░░| 66.0% (66/100) 耗时:5246.3s 剩余:2702.6s 窗口66/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.1s 剩余:0.0s
测试窗口2180期: |████████████████████░░░░░░░░░░| 67.0% (67/100) 耗时:5320.4s 剩余:2620.5s 窗口67/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.0s 剩余:0.0s
测试窗口2180期: |████████████████████░░░░░░░░░░| 68.0% (68/100) 耗时:5394.4s 剩余:2538.5s 窗口68/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.2s 剩余:0.0s
测试窗口2180期: |████████████████████░░░░░░░░░░| 69.0% (69/100) 耗时:5467.6s 剩余:2456.5s 窗口69/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.0s 剩余:0.0s
测试窗口2180期: |█████████████████████░░░░░░░░░| 70.0% (70/100) 耗时:5541.6s 剩余:2375.0s 窗口70/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.0s 剩余:0.0s
测试窗口2180期: |█████████████████████░░░░░░░░░| 71.0% (71/100) 耗时:5615.6s 剩余:2293.7s 窗口71/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.8s 剩余:0.0s
测试窗口2180期: |█████████████████████░░░░░░░░░| 72.0% (72/100) 耗时:5689.4s 剩余:2212.5s 窗口72/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.2s 剩余:0.0s
测试窗口2180期: |█████████████████████░░░░░░░░░| 73.0% (73/100) 耗时:5763.6s 剩余:2131.7s 窗口73/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.2s 剩余:0.0s
测试窗口2180期: |██████████████████████░░░░░░░░| 74.0% (74/100) 耗时:5837.7s 剩余:2051.1s 窗口74/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.8s 剩余:0.0s
测试窗口2180期: |██████████████████████░░░░░░░░| 75.0% (75/100) 耗时:5912.5s 剩余:1970.8s 窗口75/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.1s 剩余:0.0s
测试窗口2180期: |██████████████████████░░░░░░░░| 76.0% (76/100) 耗时:5986.6s 剩余:1890.5s 窗口76/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.8s 剩余:0.0s
测试窗口2180期: |███████████████████████░░░░░░░| 77.0% (77/100) 耗时:6060.4s 剩余:1810.2s 窗口77/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:73.5s 剩余:0.0s
测试窗口2180期: |███████████████████████░░░░░░░| 78.0% (78/100) 耗时:6133.9s 剩余:1730.1s 窗口78/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.3s 剩余:0.0s
测试窗口2180期: |███████████████████████░░░░░░░| 79.0% (79/100) 耗时:6208.2s 剩余:1650.3s 窗口79/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.9s 剩余:0.0s
测试窗口2180期: |████████████████████████░░░░░░| 80.0% (80/100) 耗时:6283.1s 剩余:1570.8s 窗口80/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.3s 剩余:0.0s
测试窗口2180期: |████████████████████████░░░░░░| 81.0% (81/100) 耗时:6358.4s 剩余:1491.5s 窗口81/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.9s 剩余:0.0s
测试窗口2180期: |████████████████████████░░░░░░| 82.0% (82/100) 耗时:6433.3s 剩余:1412.2s 窗口82/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.1s 剩余:0.0s
测试窗口2180期: |████████████████████████░░░░░░| 83.0% (83/100) 耗时:6508.5s 剩余:1333.1s 窗口83/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.7s 剩余:0.0s
测试窗口2180期: |█████████████████████████░░░░░| 84.0% (84/100) 耗时:6583.1s 剩余:1253.9s 窗口84/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.5s 剩余:0.0s
测试窗口2180期: |█████████████████████████░░░░░| 85.0% (85/100) 耗时:6658.7s 剩余:1175.1s 窗口85/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.6s 剩余:0.0s
测试窗口2180期: |█████████████████████████░░░░░| 86.0% (86/100) 耗时:6733.3s 剩余:1096.1s 窗口86/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.4s 剩余:0.0s
测试窗口2180期: |██████████████████████████░░░░| 87.0% (87/100) 耗时:6807.7s 剩余:1017.2s 窗口87/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.1s 剩余:0.0s
测试窗口2180期: |██████████████████████████░░░░| 88.0% (88/100) 耗时:6882.7s 剩余:938.6s 窗口88/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.5s 剩余:0.0s
测试窗口2180期: |██████████████████████████░░░░| 89.0% (89/100) 耗时:6958.3s 剩余:860.0s 窗口89/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:74.2s 剩余:0.0s
测试窗口2180期: |███████████████████████████░░░| 90.0% (90/100) 耗时:7032.5s 剩余:781.4s 窗口90/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.5s 剩余:0.0s
测试窗口2180期: |███████████████████████████░░░| 91.0% (91/100) 耗时:7108.0s 剩余:703.0s 窗口91/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.5s 剩余:0.0s
测试窗口2180期: |███████████████████████████░░░| 92.0% (92/100) 耗时:7184.5s 剩余:624.7s 窗口92/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.0s 剩余:0.0s
测试窗口2180期: |███████████████████████████░░░| 93.0% (93/100) 耗时:7260.5s 剩余:546.5s 窗口93/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.5s 剩余:0.0s
测试窗口2180期: |████████████████████████████░░| 94.0% (94/100) 耗时:7337.1s 剩余:468.3s 窗口94/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.0s 剩余:0.0s
测试窗口2180期: |████████████████████████████░░| 95.0% (95/100) 耗时:7413.1s 剩余:390.2s 窗口95/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.0s 剩余:0.0s
测试窗口2180期: |████████████████████████████░░| 96.0% (96/100) 耗时:7489.1s 剩余:312.0s 窗口96/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.2s 剩余:0.0s
测试窗口2180期: |█████████████████████████████░| 97.0% (97/100) 耗时:7564.3s 剩余:233.9s 窗口97/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.5s 剩余:0.0s
测试窗口2180期: |█████████████████████████████░| 98.0% (98/100) 耗时:7639.8s 剩余:155.9s 窗口98/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.5s 剩余:0.0s
测试窗口2180期: |█████████████████████████████░| 99.0% (99/100) 耗时:7715.3s 剩余:77.9s 窗口99/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.3s 剩余:0.0s
测试窗口2180期: |██████████████████████████████| 100.0% (100/100) 耗时:7790.6s 剩余:0.0s 窗口100/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.0s 剩余:0.0s
测试窗口2180期: |██████████████████████████████| 100.0% (100/100) 耗时:7866.6s 剩余:0.0s
周期2180期: 成功率=9.0000% (测试2000次)
逆向分析进度: |██████████████████████████████░░░░░░░░░░░░░░░░░░░░| 60.0% (6/10) 耗时:35974.5s 剩余:23983.0s 测试周期:2650期运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.3s 剩余:0.0s
测试窗口2650期: |░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 2.0% (2/100) 耗时:77.3s 剩余:3786.4s 窗口2/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.4s 剩余:0.0s
测试窗口2650期: |░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 3.0% (3/100) 耗时:153.6s 剩余:4967.4s 窗口3/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.9s 剩余:0.0s
测试窗口2650期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 4.0% (4/100) 耗时:229.5s 剩余:5507.6s 窗口4/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.3s 剩余:0.0s
测试窗口2650期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 5.0% (5/100) 耗时:305.8s 剩余:5809.7s 窗口5/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.7s 剩余:0.0s
测试窗口2650期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 6.0% (6/100) 耗时:382.5s 剩余:5992.7s 窗口6/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.2s 剩余:0.0s
测试窗口2650期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 7.0% (7/100) 耗时:459.7s 剩余:6107.2s 窗口7/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.1s 剩余:0.0s
测试窗口2650期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 8.0% (8/100) 耗时:536.7s 剩余:6172.5s 窗口8/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.6s 剩余:0.0s
测试窗口2650期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 9.0% (9/100) 耗时:613.4s 剩余:6201.9s 窗口9/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.5s 剩余:0.0s
测试窗口2650期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 10.0% (10/100) 耗时:690.9s 剩余:6218.1s 窗口10/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.2s 剩余:0.0s
测试窗口2650期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 11.0% (11/100) 耗时:768.1s 剩余:6214.4s 窗口11/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.4s 剩余:0.0s
测试窗口2650期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 12.0% (12/100) 耗时:845.5s 剩余:6200.1s 窗口12/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.8s 剩余:0.0s
测试窗口2650期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 13.0% (13/100) 耗时:922.2s 剩余:6171.9s 窗口13/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.5s 剩余:0.0s
测试窗口2650期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 14.0% (14/100) 耗时:998.8s 剩余:6135.2s 窗口14/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.5s 剩余:0.0s
测试窗口2650期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 15.0% (15/100) 耗时:1075.3s 剩余:6093.2s 窗口15/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.7s 剩余:0.0s
测试窗口2650期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 16.0% (16/100) 耗时:1150.9s 剩余:6042.5s 窗口16/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.6s 剩余:0.0s
测试窗口2650期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 17.0% (17/100) 耗时:1226.6s 剩余:5988.6s 窗口17/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.6s 剩余:0.0s
测试窗口2650期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 18.0% (18/100) 耗时:1303.2s 剩余:5936.7s 窗口18/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.7s 剩余:0.0s
测试窗口2650期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 19.0% (19/100) 耗时:1379.9s 剩余:5882.8s 窗口19/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.2s 剩余:0.0s
测试窗口2650期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 20.0% (20/100) 耗时:1456.2s 剩余:5824.6s 窗口20/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.5s 剩余:0.0s
测试窗口2650期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 21.0% (21/100) 耗时:1533.6s 剩余:5769.3s 窗口21/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.6s 剩余:0.0s
测试窗口2650期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 22.0% (22/100) 耗时:1610.2s 剩余:5708.9s 窗口22/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.3s 剩余:0.0s
测试窗口2650期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 23.0% (23/100) 耗时:1686.5s 剩余:5646.1s 窗口23/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.1s 剩余:0.0s
测试窗口2650期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 24.0% (24/100) 耗时:1762.6s 剩余:5581.5s 窗口24/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.4s 剩余:0.0s
测试窗口2650期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 25.0% (25/100) 耗时:1838.9s 剩余:5516.8s 窗口25/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.7s 剩余:0.0s
测试窗口2650期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 26.0% (26/100) 耗时:1915.6s 剩余:5452.1s 窗口26/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.5s 剩余:0.0s
测试窗口2650期: |████████░░░░░░░░░░░░░░░░░░░░░░| 27.0% (27/100) 耗时:1992.1s 剩余:5386.1s 窗口27/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.3s 剩余:0.0s
测试窗口2650期: |████████░░░░░░░░░░░░░░░░░░░░░░| 28.0% (28/100) 耗时:2068.4s 剩余:5318.9s 窗口28/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.6s 剩余:0.0s
测试窗口2650期: |████████░░░░░░░░░░░░░░░░░░░░░░| 29.0% (29/100) 耗时:2145.0s 剩余:5251.6s 窗口29/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.1s 剩余:0.0s
测试窗口2650期: |█████████░░░░░░░░░░░░░░░░░░░░░| 30.0% (30/100) 耗时:2221.1s 剩余:5182.6s 窗口30/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.1s 剩余:0.0s
测试窗口2650期: |█████████░░░░░░░░░░░░░░░░░░░░░| 31.0% (31/100) 耗时:2297.2s 剩余:5113.2s 窗口31/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:78.0s 剩余:0.0s
测试窗口2650期: |█████████░░░░░░░░░░░░░░░░░░░░░| 32.0% (32/100) 耗时:2375.3s 剩余:5047.4s 窗口32/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.4s 剩余:0.0s
测试窗口2650期: |█████████░░░░░░░░░░░░░░░░░░░░░| 33.0% (33/100) 耗时:2451.7s 剩余:4977.7s 窗口33/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.2s 剩余:0.0s
测试窗口2650期: |██████████░░░░░░░░░░░░░░░░░░░░| 34.0% (34/100) 耗时:2528.9s 剩余:4909.0s 窗口34/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.3s 剩余:0.0s
测试窗口2650期: |██████████░░░░░░░░░░░░░░░░░░░░| 35.0% (35/100) 耗时:2605.2s 剩余:4838.2s 窗口35/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.4s 剩余:0.0s
测试窗口2650期: |██████████░░░░░░░░░░░░░░░░░░░░| 36.0% (36/100) 耗时:2681.6s 剩余:4767.3s 窗口36/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.6s 剩余:0.0s
测试窗口2650期: |███████████░░░░░░░░░░░░░░░░░░░| 37.0% (37/100) 耗时:2758.2s 剩余:4696.3s 窗口37/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.4s 剩余:0.0s
测试窗口2650期: |███████████░░░░░░░░░░░░░░░░░░░| 38.0% (38/100) 耗时:2834.6s 剩余:4624.9s 窗口38/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.7s 剩余:0.0s
测试窗口2650期: |███████████░░░░░░░░░░░░░░░░░░░| 39.0% (39/100) 耗时:2911.3s 剩余:4553.6s 窗口39/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.0s 剩余:0.0s
测试窗口2650期: |████████████░░░░░░░░░░░░░░░░░░| 40.0% (40/100) 耗时:2988.3s 剩余:4482.5s 窗口40/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.4s 剩余:0.0s
测试窗口2650期: |████████████░░░░░░░░░░░░░░░░░░| 41.0% (41/100) 耗时:3064.7s 剩余:4410.1s 窗口41/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.8s 剩余:0.0s
测试窗口2650期: |████████████░░░░░░░░░░░░░░░░░░| 42.0% (42/100) 耗时:3141.4s 剩余:4338.2s 窗口42/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.8s 剩余:0.0s
测试窗口2650期: |████████████░░░░░░░░░░░░░░░░░░| 43.0% (43/100) 耗时:3218.3s 剩余:4266.1s 窗口43/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.1s 剩余:0.0s
测试窗口2650期: |█████████████░░░░░░░░░░░░░░░░░| 44.0% (44/100) 耗时:3295.3s 剩余:4194.1s 窗口44/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.8s 剩余:0.0s
测试窗口2650期: |█████████████░░░░░░░░░░░░░░░░░| 45.0% (45/100) 耗时:3372.2s 剩余:4121.5s 窗口45/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.2s 剩余:0.0s
测试窗口2650期: |█████████████░░░░░░░░░░░░░░░░░| 46.0% (46/100) 耗时:3449.4s 剩余:4049.3s 窗口46/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.9s 剩余:0.0s
测试窗口2650期: |██████████████░░░░░░░░░░░░░░░░| 47.0% (47/100) 耗时:3526.2s 剩余:3976.4s 窗口47/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.1s 剩余:0.0s
测试窗口2650期: |██████████████░░░░░░░░░░░░░░░░| 48.0% (48/100) 耗时:3602.3s 剩余:3902.5s 窗口48/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.9s 剩余:0.0s
测试窗口2650期: |██████████████░░░░░░░░░░░░░░░░| 49.0% (49/100) 耗时:3678.2s 剩余:3828.3s 窗口49/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.6s 剩余:0.0s
测试窗口2650期: |███████████████░░░░░░░░░░░░░░░| 50.0% (50/100) 耗时:3753.8s 剩余:3753.8s 窗口50/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.9s 剩余:0.0s
测试窗口2650期: |███████████████░░░░░░░░░░░░░░░| 51.0% (51/100) 耗时:3829.7s 剩余:3679.5s 窗口51/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.6s 剩余:0.0s
测试窗口2650期: |███████████████░░░░░░░░░░░░░░░| 52.0% (52/100) 耗时:3905.3s 剩余:3604.9s 窗口52/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.7s 剩余:0.0s
测试窗口2650期: |███████████████░░░░░░░░░░░░░░░| 53.0% (53/100) 耗时:3982.0s 剩余:3531.2s 窗口53/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.3s 剩余:0.0s
测试窗口2650期: |████████████████░░░░░░░░░░░░░░| 54.0% (54/100) 耗时:4059.3s 剩余:3457.9s 窗口54/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.5s 剩余:0.0s
测试窗口2650期: |████████████████░░░░░░░░░░░░░░| 55.0% (55/100) 耗时:4136.8s 剩余:3384.6s 窗口55/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.4s 剩余:0.0s
测试窗口2650期: |████████████████░░░░░░░░░░░░░░| 56.0% (56/100) 耗时:4214.2s 剩余:3311.2s 窗口56/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.1s 剩余:0.0s
测试窗口2650期: |█████████████████░░░░░░░░░░░░░| 57.0% (57/100) 耗时:4291.3s 剩余:3237.3s 窗口57/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.8s 剩余:0.0s
测试窗口2650期: |█████████████████░░░░░░░░░░░░░| 58.0% (58/100) 耗时:4369.1s 剩余:3163.8s 窗口58/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.6s 剩余:0.0s
测试窗口2650期: |█████████████████░░░░░░░░░░░░░| 59.0% (59/100) 耗时:4445.6s 剩余:3089.3s 窗口59/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.0s 剩余:0.0s
测试窗口2650期: |██████████████████░░░░░░░░░░░░| 60.0% (60/100) 耗时:4522.6s 剩余:3015.1s 窗口60/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.1s 剩余:0.0s
测试窗口2650期: |██████████████████░░░░░░░░░░░░| 61.0% (61/100) 耗时:4599.7s 剩余:2940.8s 窗口61/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.2s 剩余:0.0s
测试窗口2650期: |██████████████████░░░░░░░░░░░░| 62.0% (62/100) 耗时:4676.9s 剩余:2866.5s 窗口62/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.3s 剩余:0.0s
测试窗口2650期: |██████████████████░░░░░░░░░░░░| 63.0% (63/100) 耗时:4753.2s 剩余:2791.5s 窗口63/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:75.6s 剩余:0.0s
测试窗口2650期: |███████████████████░░░░░░░░░░░| 64.0% (64/100) 耗时:4828.8s 剩余:2716.2s 窗口64/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.2s 剩余:0.0s
测试窗口2650期: |███████████████████░░░░░░░░░░░| 65.0% (65/100) 耗时:4905.0s 剩余:2641.2s 窗口65/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.4s 剩余:0.0s
测试窗口2650期: |███████████████████░░░░░░░░░░░| 66.0% (66/100) 耗时:4981.4s 剩余:2566.2s 窗口66/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.6s 剩余:0.0s
测试窗口2650期: |████████████████████░░░░░░░░░░| 67.0% (67/100) 耗时:5058.0s 剩余:2491.2s 窗口67/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.4s 剩余:0.0s
测试窗口2650期: |████████████████████░░░░░░░░░░| 68.0% (68/100) 耗时:5134.4s 剩余:2416.2s 窗口68/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.1s 剩余:0.0s
测试窗口2650期: |████████████████████░░░░░░░░░░| 69.0% (69/100) 耗时:5211.5s 剩余:2341.4s 窗口69/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:78.1s 剩余:0.0s
测试窗口2650期: |█████████████████████░░░░░░░░░| 70.0% (70/100) 耗时:5289.6s 剩余:2267.0s 窗口70/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.1s 剩余:0.0s
测试窗口2650期: |█████████████████████░░░░░░░░░| 71.0% (71/100) 耗时:5366.7s 剩余:2192.0s 窗口71/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.8s 剩余:0.0s
测试窗口2650期: |█████████████████████░░░░░░░░░| 72.0% (72/100) 耗时:5444.6s 剩余:2117.3s 窗口72/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:76.8s 剩余:0.0s
测试窗口2650期: |█████████████████████░░░░░░░░░| 73.0% (73/100) 耗时:5521.4s 剩余:2042.2s 窗口73/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.6s 剩余:0.0s
测试窗口2650期: |██████████████████████░░░░░░░░| 74.0% (74/100) 耗时:5599.0s 剩余:1967.2s 窗口74/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.3s 剩余:0.0s
测试窗口2650期: |██████████████████████░░░░░░░░| 75.0% (75/100) 耗时:5676.3s 剩余:1892.1s 窗口75/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.4s 剩余:0.0s
测试窗口2650期: |██████████████████████░░░░░░░░| 76.0% (76/100) 耗时:5753.7s 剩余:1816.9s 窗口76/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.3s 剩余:0.0s
测试窗口2650期: |███████████████████████░░░░░░░| 77.0% (77/100) 耗时:5830.9s 剩余:1741.7s 窗口77/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.6s 剩余:0.0s
测试窗口2650期: |███████████████████████░░░░░░░| 78.0% (78/100) 耗时:5908.5s 剩余:1666.5s 窗口78/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:78.4s 剩余:0.0s
测试窗口2650期: |███████████████████████░░░░░░░| 79.0% (79/100) 耗时:5986.9s 剩余:1591.4s 窗口79/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.8s 剩余:0.0s
测试窗口2650期: |████████████████████████░░░░░░| 80.0% (80/100) 耗时:6064.7s 剩余:1516.2s 窗口80/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.8s 剩余:0.0s
测试窗口2650期: |████████████████████████░░░░░░| 81.0% (81/100) 耗时:6142.5s 剩余:1440.8s 窗口81/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:78.0s 剩余:0.0s
测试窗口2650期: |████████████████████████░░░░░░| 82.0% (82/100) 耗时:6220.6s 剩余:1365.5s 窗口82/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:77.6s 剩余:0.0s
测试窗口2650期: |████████████████████████░░░░░░| 83.0% (83/100) 耗时:6298.2s 剩余:1290.0s 窗口83/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:78.2s 剩余:0.0s
测试窗口2650期: |█████████████████████████░░░░░| 84.0% (84/100) 耗时:6376.3s 剩余:1214.5s 窗口84/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.4s 剩余:0.0s
测试窗口2650期: |█████████████████████████░░░░░| 85.0% (85/100) 耗时:6455.7s 剩余:1139.2s 窗口85/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.1s 剩余:0.0s
测试窗口2650期: |█████████████████████████░░░░░| 86.0% (86/100) 耗时:6534.9s 剩余:1063.8s 窗口86/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.6s 剩余:0.0s
测试窗口2650期: |██████████████████████████░░░░| 87.0% (87/100) 耗时:6614.4s 剩余:988.4s 窗口87/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.9s 剩余:0.0s
测试窗口2650期: |██████████████████████████░░░░| 88.0% (88/100) 耗时:6694.4s 剩余:912.9s 窗口88/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.3s 剩余:0.0s
测试窗口2650期: |██████████████████████████░░░░| 89.0% (89/100) 耗时:6774.7s 剩余:837.3s 窗口89/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.9s 剩余:0.0s
测试窗口2650期: |███████████████████████████░░░| 90.0% (90/100) 耗时:6854.6s 剩余:761.6s 窗口90/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.7s 剩余:0.0s
测试窗口2650期: |███████████████████████████░░░| 91.0% (91/100) 耗时:6934.3s 剩余:685.8s 窗口91/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.0s 剩余:0.0s
测试窗口2650期: |███████████████████████████░░░| 92.0% (92/100) 耗时:7014.3s 剩余:609.9s 窗口92/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.6s 剩余:0.0s
测试窗口2650期: |███████████████████████████░░░| 93.0% (93/100) 耗时:7094.0s 剩余:534.0s 窗口93/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.4s 剩余:0.0s
测试窗口2650期: |████████████████████████████░░| 94.0% (94/100) 耗时:7173.4s 剩余:457.9s 窗口94/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.2s 剩余:0.0s
测试窗口2650期: |████████████████████████████░░| 95.0% (95/100) 耗时:7253.6s 剩余:381.8s 窗口95/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.6s 剩余:0.0s
测试窗口2650期: |████████████████████████████░░| 96.0% (96/100) 耗时:7333.3s 剩余:305.6s 窗口96/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.2s 剩余:0.0s
测试窗口2650期: |█████████████████████████████░| 97.0% (97/100) 耗时:7413.4s 剩余:229.3s 窗口97/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.4s 剩余:0.0s
测试窗口2650期: |█████████████████████████████░| 98.0% (98/100) 耗时:7493.8s 剩余:152.9s 窗口98/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.1s 剩余:0.0s
测试窗口2650期: |█████████████████████████████░| 99.0% (99/100) 耗时:7574.0s 剩余:76.5s 窗口99/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.7s 剩余:0.0s
测试窗口2650期: |██████████████████████████████| 100.0% (100/100) 耗时:7654.7s 剩余:0.0s 窗口100/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.4s 剩余:0.0s
测试窗口2650期: |██████████████████████████████| 100.0% (100/100) 耗时:7735.1s 剩余:0.0s
周期2650期: 成功率=10.1000% (测试2000次)
逆向分析进度: |███████████████████████████████████░░░░░░░░░░░░░░░| 70.0% (7/10) 耗时:43709.6s 剩余:18732.7s 测试周期:3120期运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.5s 剩余:0.0s
测试窗口3120期: |░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 2.0% (2/100) 耗时:80.5s 剩余:3943.5s 窗口2/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.1s 剩余:0.0s
测试窗口3120期: |░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 3.0% (3/100) 耗时:160.6s 剩余:5192.3s 窗口3/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:81.0s 剩余:0.0s
测试窗口3120期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 4.0% (4/100) 耗时:241.6s 剩余:5797.6s 窗口4/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.3s 剩余:0.0s
测试窗口3120期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 5.0% (5/100) 耗时:321.8s 剩余:6114.6s 窗口5/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.5s 剩余:0.0s
测试窗口3120期: |█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 6.0% (6/100) 耗时:401.3s 剩余:6287.0s 窗口6/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.6s 剩余:0.0s
测试窗口3120期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 7.0% (7/100) 耗时:480.9s 剩余:6388.8s 窗口7/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.6s 剩余:0.0s
测试窗口3120期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 8.0% (8/100) 耗时:560.4s 剩余:6445.0s 窗口8/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.0s 剩余:0.0s
测试窗口3120期: |██░░░░░░░░░░░░░░░░░░░░░░░░░░░░| 9.0% (9/100) 耗时:640.5s 剩余:6475.7s 窗口9/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.7s 剩余:0.0s
测试窗口3120期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 10.0% (10/100) 耗时:720.1s 剩余:6481.0s 窗口10/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.7s 剩余:0.0s
测试窗口3120期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 11.0% (11/100) 耗时:799.8s 剩余:6470.9s 窗口11/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.9s 剩余:0.0s
测试窗口3120期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 12.0% (12/100) 耗时:879.7s 剩余:6450.8s 窗口12/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.8s 剩余:0.0s
测试窗口3120期: |███░░░░░░░░░░░░░░░░░░░░░░░░░░░| 13.0% (13/100) 耗时:959.5s 剩余:6421.2s 窗口13/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.1s 剩余:0.0s
测试窗口3120期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 14.0% (14/100) 耗时:1038.6s 剩余:6380.2s 窗口14/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.4s 剩余:0.0s
测试窗口3120期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 15.0% (15/100) 耗时:1118.1s 剩余:6335.6s 窗口15/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.5s 剩余:0.0s
测试窗口3120期: |████░░░░░░░░░░░░░░░░░░░░░░░░░░| 16.0% (16/100) 耗时:1197.5s 剩余:6287.0s 窗口16/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:82.0s 剩余:0.0s
测试窗口3120期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 17.0% (17/100) 耗时:1279.5s 剩余:6246.9s 窗口17/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:86.6s 剩余:0.0s
测试窗口3120期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 18.0% (18/100) 耗时:1366.1s 剩余:6223.2s 窗口18/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:82.6s 剩余:0.0s
测试窗口3120期: |█████░░░░░░░░░░░░░░░░░░░░░░░░░| 19.0% (19/100) 耗时:1448.7s 剩余:6176.0s 窗口19/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:81.5s 剩余:0.0s
测试窗口3120期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 20.0% (20/100) 耗时:1530.2s 剩余:6120.7s 窗口20/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:110.5s 剩余:0.0s
测试窗口3120期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 21.0% (21/100) 耗时:1640.7s 剩余:6172.2s 窗口21/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:80.8s 剩余:0.0s
测试窗口3120期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 22.0% (22/100) 耗时:1721.6s 剩余:6103.7s 窗口22/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:69.1s 剩余:0.0s
测试窗口3120期: |██████░░░░░░░░░░░░░░░░░░░░░░░░| 23.0% (23/100) 耗时:1790.7s 剩余:5995.0s 窗口23/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:94.2s 剩余:0.0s
测试窗口3120期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 24.0% (24/100) 耗时:1884.9s 剩余:5968.8s 窗口24/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:101.3s 剩余:0.0s
测试窗口3120期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 25.0% (25/100) 耗时:1986.2s 剩余:5958.6s 窗口25/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:100.7s 剩余:0.0s
测试窗口3120期: |███████░░░░░░░░░░░░░░░░░░░░░░░| 26.0% (26/100) 耗时:2087.0s 剩余:5939.8s 窗口26/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:112.2s 剩余:0.0s
测试窗口3120期: |████████░░░░░░░░░░░░░░░░░░░░░░| 27.0% (27/100) 耗时:2199.1s 剩余:5945.8s 窗口27/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:94.4s 剩余:0.0s
测试窗口3120期: |████████░░░░░░░░░░░░░░░░░░░░░░| 28.0% (28/100) 耗时:2293.6s 剩余:5897.7s 窗口28/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:89.7s 剩余:0.0s
测试窗口3120期: |████████░░░░░░░░░░░░░░░░░░░░░░| 29.0% (29/100) 耗时:2383.3s 剩余:5835.0s 窗口29/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:126.1s 剩余:0.0s
测试窗口3120期: |█████████░░░░░░░░░░░░░░░░░░░░░| 30.0% (30/100) 耗时:2509.4s 剩余:5855.3s 窗口30/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:79.4s 剩余:0.0s
测试窗口3120期: |█████████░░░░░░░░░░░░░░░░░░░░░| 31.0% (31/100) 耗时:2588.8s 剩余:5762.1s 窗口31/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:150.5s 剩余:0.0s
测试窗口3120期: |█████████░░░░░░░░░░░░░░░░░░░░░| 32.0% (32/100) 耗时:2739.3s 剩余:5821.0s 窗口32/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:116.2s 剩余:0.0s
测试窗口3120期: |█████████░░░░░░░░░░░░░░░░░░░░░| 33.0% (33/100) 耗时:2855.5s 剩余:5797.4s 窗口33/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:86.8s 剩余:0.0s
测试窗口3120期: |██████████░░░░░░░░░░░░░░░░░░░░| 34.0% (34/100) 耗时:2942.3s 剩余:5711.5s 窗口34/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:83.3s 剩余:0.0s
测试窗口3120期: |██████████░░░░░░░░░░░░░░░░░░░░| 35.0% (35/100) 耗时:3025.5s 剩余:5618.9s 窗口35/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:84.0s 剩余:0.0s
测试窗口3120期: |██████████░░░░░░░░░░░░░░░░░░░░| 36.0% (36/100) 耗时:3109.5s 剩余:5528.1s 窗口36/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:88.7s 剩余:0.0s
测试窗口3120期: |███████████░░░░░░░░░░░░░░░░░░░| 37.0% (37/100) 耗时:3198.3s 剩余:5445.7s 窗口37/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:82.4s 剩余:0.0s
测试窗口3120期: |███████████░░░░░░░░░░░░░░░░░░░| 38.0% (38/100) 耗时:3280.7s 剩余:5352.6s 窗口38/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:138.1s 剩余:0.0s
测试窗口3120期: |███████████░░░░░░░░░░░░░░░░░░░| 39.0% (39/100) 耗时:3418.8s 剩余:5347.3s 窗口39/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:95.8s 剩余:0.0s
测试窗口3120期: |████████████░░░░░░░░░░░░░░░░░░| 40.0% (40/100) 耗时:3514.6s 剩余:5271.9s 窗口40/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:129.5s 剩余:0.0s
测试窗口3120期: |████████████░░░░░░░░░░░░░░░░░░| 41.0% (41/100) 耗时:3644.1s 剩余:5243.9s 窗口41/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:127.4s 剩余:0.0s
测试窗口3120期: |████████████░░░░░░░░░░░░░░░░░░| 42.0% (42/100) 耗时:3771.5s 剩余:5208.3s 窗口42/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:116.8s 剩余:0.0s
测试窗口3120期: |████████████░░░░░░░░░░░░░░░░░░| 43.0% (43/100) 耗时:3888.3s 剩余:5154.3s 窗口43/100运行集成模型预测...
模型计算: |██████████████████████████████| 100.0% (6/6) 耗时:124.8s 剩余:0.0s
测试窗口3120期: |█████████████░░░░░░░░░░░░░░░░░| 44.0% (44/100) 耗时:4013.1s 剩余:5107.6s 窗口44/100运行集成模型预测...
模型脚本代码
# 文件名: 福彩3D深度逆向分析预测系统_6模型集成完整版.py
# 说明: 真正的深度逆向分析,集成6个模型,预测数据库中不包含的下一期
import numpy as np
import pandas as pd
import os
from datetime import datetime, timedelta
from collections import Counter, defaultdict
import itertools
import warnings
import time
import sys
import numba as nb
from functools import lru_cache
import concurrent.futures
from scipy import stats
import warnings
warnings.filterwarnings('ignore')
# ====================================================
# 配置部分
# ====================================================
DATA_PATH = r"C:\Users\Administrator\Desktop\data\脚本\3d\原始数据\3d1.csv"
OUTPUT_DIR = r"C:\Users\Administrator\Desktop\data\脚本\3d\结论"
BUDGET = 20
REPORT_FILENAME = f"福彩3D深度逆向分析预测_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt"
# ====================================================
# 自定义进度条(改进版)
# ====================================================
class AdvancedProgressBar:
"""高级进度条"""
def __init__(self, total, desc="进度", bar_length=50):
self.total = total
self.desc = desc
self.bar_length = bar_length
self.start_time = time.time()
self.current = 0
self.last_update_time = time.time()
def update(self, current, info=""):
"""更新进度"""
current_time = time.time()
# 限制更新频率,避免卡顿
if current_time - self.last_update_time < 0.1 and current < self.total:
return
self.current = current
self.last_update_time = current_time
percent = (current / self.total) * 100
elapsed = current_time - self.start_time
# 计算预估剩余时间
if current > 0:
remaining = (elapsed / current) * (self.total - current)
time_str = f"耗时:{elapsed:.1f}s 剩余:{remaining:.1f}s"
else:
time_str = f"耗时:{elapsed:.1f}s"
filled_length = int(self.bar_length * current // self.total)
bar = '█' * filled_length + '░' * (self.bar_length - filled_length)
sys.stdout.write(f'\r{self.desc}: |{bar}| {percent:.1f}% ({current}/{self.total}) {time_str} {info}')
sys.stdout.flush()
def complete(self):
"""完成进度条"""
self.update(self.total)
print() # 换行
def log(self, message):
"""记录日志"""
print(f"\n {message}")
# ====================================================
# 优化计算函数(使用numba加速)
# ====================================================
@nb.jit(nopython=True, fastmath=True, cache=True)
def calculate_scores_numba(sum_counts, span_counts, digit_counts, pattern_counts,
total_sum, total_span, total_pattern, recent_len):
"""使用numba加速计算分数"""
scores = np.zeros(1000)
for i in range(1000):
num_str = i
d1 = num_str // 100
d2 = (num_str // 10) % 10
d3 = num_str % 10
# 基本特征
sum_val = d1 + d2 + d3
span_val = max(d1, d2, d3) - min(d1, d2, d3)
# 和值分数
sum_idx = int(sum_val)
sum_score = sum_counts[sum_idx] / total_sum
# 跨度分数
span_idx = int(span_val)
span_score = span_counts[span_idx] / total_span
# 热号分数
hot_score = (digit_counts[d1] + digit_counts[d2] + digit_counts[d3]) / (recent_len * 3 + 1e-6)
# 形态分数
unique_count = len(set([d1, d2, d3]))
if unique_count == 1:
pattern_idx = 0 # 豹子
elif unique_count == 2:
pattern_idx = 1 # 组三
else:
pattern_idx = 2 # 组六
pattern_score = pattern_counts[pattern_idx] / total_pattern
# 综合得分
total_score = (sum_score * 0.25 + span_score * 0.2 +
hot_score * 0.25 + pattern_score * 0.15)
scores[i] = total_score + np.random.uniform(0, 0.000001)
return scores
# ====================================================
# 6个集成模型定义
# ====================================================
class HistoryReverseModel:
"""原始逆向分析模型 - 基于历史数据逆向推导"""
def __init__(self, data):
self.data = data
self.total_periods = len(data)
def calculate_scores(self, history_data, lookback_window=100):
"""基于历史逆向分析计算分数"""
if len(history_data) < 50:
return np.zeros(1000)
scores = np.zeros(1000)
# 使用滑动窗口逆向分析
window_size = min(50, len(history_data) // 2)
for i in range(len(history_data) - window_size):
train_data = history_data.iloc[i:i + window_size]
test_data = history_data.iloc[i + window_size:min(i + window_size + 10, len(history_data))]
if len(test_data) == 0:
continue
# 从训练数据中提取规律
patterns = self._extract_patterns(train_data)
# 测试这些规律在测试数据中的表现
for num in range(1000):
if self._test_pattern(num, patterns, test_data):
scores[num] += 1
# 归一化分数
if scores.max() > 0:
scores = scores / scores.max()
return scores
def _extract_patterns(self, data):
"""从数据中提取规律"""
patterns = []
# 提取和值规律
sum_counts = data['和值'].value_counts()
common_sums = sum_counts[sum_counts > len(data) * 0.05].index.tolist()
patterns.append(('sum', common_sums))
# 提取跨度规律
span_counts = data['跨度'].value_counts()
common_spans = span_counts[span_counts > len(data) * 0.05].index.tolist()
patterns.append(('span', common_spans))
# 提取形态规律
pattern_counts = data['形态'].value_counts()
common_patterns = pattern_counts[pattern_counts > len(data) * 0.05].index.tolist()
patterns.append(('pattern', common_patterns))
return patterns
def _test_pattern(self, num, patterns, test_data):
"""测试数字是否符合规律"""
num_str = str(num).zfill(3)
d1, d2, d3 = int(num_str[0]), int(num_str[1]), int(num_str[2])
for pattern_type, pattern_values in patterns:
if pattern_type == 'sum':
sum_val = d1 + d2 + d3
if sum_val not in pattern_values:
return False
elif pattern_type == 'span':
span_val = max(d1, d2, d3) - min(d1, d2, d3)
if span_val not in pattern_values:
return False
elif pattern_type == 'pattern':
unique_count = len(set([d1, d2, d3]))
if unique_count == 1:
pattern = '豹子'
elif unique_count == 2:
pattern = '组三'
else:
pattern = '组六'
if pattern not in pattern_values:
return False
return True
class SumFrequencyModel:
"""和值频率模型 - 分析和值出现频率"""
def __init__(self, data):
self.data = data
def calculate_scores(self, history_data, lookback_window=100):
"""基于和值频率计算分数"""
if len(history_data) < 20:
return np.zeros(1000)
# 计算和值分布
recent_data = history_data.iloc[-lookback_window:] if len(history_data) > lookback_window else history_data
# 使用核密度估计
sum_values = recent_data['和值'].values
if len(sum_values) < 5:
return np.zeros(1000)
# 计算和值概率分布
kde = stats.gaussian_kde(sum_values)
scores = np.zeros(1000)
x_range = np.arange(0, 28, 1)
sum_probs = kde(x_range)
# 归一化概率
sum_probs = sum_probs / sum_probs.sum()
# 为每个号码分配分数
for num in range(1000):
num_str = str(num).zfill(3)
d1, d2, d3 = int(num_str[0]), int(num_str[1]), int(num_str[2])
sum_val = d1 + d2 + d3
if sum_val < len(sum_probs):
scores[num] = sum_probs[sum_val]
return scores
class SpanTrendModel:
"""跨度趋势模型 - 分析跨度变化趋势"""
def __init__(self, data):
self.data = data
def calculate_scores(self, history_data, lookback_window=100):
"""基于跨度趋势计算分数"""
if len(history_data) < 20:
return np.zeros(1000)
recent_data = history_data.iloc[-lookback_window:] if len(history_data) > lookback_window else history_data
# 计算跨度分布
span_values = recent_data['跨度'].values
# 使用马尔可夫链分析跨度变化
span_counts = Counter(span_values)
total_counts = sum(span_counts.values())
scores = np.zeros(1000)
for num in range(1000):
num_str = str(num).zfill(3)
d1, d2, d3 = int(num_str[0]), int(num_str[1]), int(num_str[2])
span_val = max(d1, d2, d3) - min(d1, d2, d3)
# 基于历史频率
if span_val in span_counts:
scores[num] = span_counts[span_val] / total_counts
# 添加趋势预测
if len(span_values) >= 10:
last_span = span_values[-1]
# 计算跨度变化趋势
span_changes = np.diff(span_values[-10:])
avg_change = np.mean(span_changes)
# 预测下一个跨度
predicted_span = int(np.clip(last_span + avg_change, 0, 9))
# 给予接近预测跨度的号码更高分数
for num in range(1000):
num_str = str(num).zfill(3)
d1, d2, d3 = int(num_str[0]), int(num_str[1]), int(num_str[2])
span_val = max(d1, d2, d3) - min(d1, d2, d3)
# 距离预测跨度越近,分数越高
distance = abs(span_val - predicted_span)
trend_score = 1.0 / (1.0 + distance)
scores[num] = scores[num] * 0.7 + trend_score * 0.3
return scores
class HotColdModel:
"""冷热号分析模型 - 分析号码热度"""
def __init__(self, data):
self.data = data
def calculate_scores(self, history_data, lookback_window=100):
"""基于冷热号分析计算分数"""
if len(history_data) < 20:
return np.zeros(1000)
recent_data = history_data.iloc[-lookback_window:] if len(history_data) > lookback_window else history_data
# 计算每个数字的出现频率
digit_counts = np.zeros(10)
for _, row in recent_data.iterrows():
digit_counts[int(row['百位'])] += 1
digit_counts[int(row['十位'])] += 1
digit_counts[int(row['个位'])] += 1
# 归一化频率
if digit_counts.sum() > 0:
digit_probs = digit_counts / digit_counts.sum()
else:
digit_probs = np.ones(10) / 10
scores = np.zeros(1000)
for num in range(1000):
num_str = str(num).zfill(3)
d1, d2, d3 = int(num_str[0]), int(num_str[1]), int(num_str[2])
# 计算热号分数(基于数字频率)
hot_score = digit_probs[d1] * 0.4 + digit_probs[d2] * 0.35 + digit_probs[d3] * 0.25
# 计算冷号分数(基于遗漏)
cold_score = self._calculate_cold_score(num_str, history_data)
# 综合分数
scores[num] = hot_score * 0.6 + cold_score * 0.4
return scores
def _calculate_cold_score(self, num_str, history_data):
"""计算冷号分数"""
# 检查号码在历史数据中是否长期未出现
last_seen = -1
for i in range(len(history_data) - 1, -1, -1):
if str(history_data.iloc[i]['开奖号码']) == num_str:
last_seen = i
break
if last_seen == -1:
# 从未出现,给予较高分数
omission = len(history_data)
else:
omission = len(history_data) - last_seen - 1
# 遗漏期数越多,分数越高
max_omission = 1000 # 最大遗漏期数
cold_score = min(omission / max_omission, 1.0)
return cold_score
class OmissionModel:
"""遗漏分析模型 - 分析号码遗漏情况"""
def __init__(self, data):
self.data = data
self.number_positions = defaultdict(list)
for idx, row in data.iterrows():
num_str = str(row['开奖号码'])
self.number_positions[num_str].append(idx)
def calculate_scores(self, history_data, lookback_window=200):
"""基于遗漏分析计算分数"""
scores = np.zeros(1000)
# 计算每个号码的遗漏期数
current_period = len(self.data) - 1
history_end_idx = len(self.data) - 1
history_start_idx = max(0, history_end_idx - len(history_data) + 1)
for num in range(1000):
num_str = str(num).zfill(3)
# 计算当前遗漏期数
omission = self._calculate_omission(num_str, history_data,
history_start_idx, history_end_idx)
# 计算理论遗漏和实际遗漏的偏差
theoretical_omission = self._calculate_theoretical_omission(num_str, history_data)
if theoretical_omission > 0:
# 实际遗漏超过理论遗漏越多,分数越高
ratio = omission / theoretical_omission
scores[num] = min(ratio, 3.0) / 3.0 # 归一化到0-1
else:
scores[num] = 0
return scores
def _calculate_omission(self, num_str, history_data, start_idx, end_idx):
"""计算遗漏期数"""
if num_str in self.number_positions:
positions = self.number_positions[num_str]
# 找到在历史数据范围内的最近位置
last_seen_idx = None
for pos in reversed(positions):
if pos >= start_idx and pos <= end_idx:
last_seen_idx = pos
break
if last_seen_idx is not None:
return end_idx - last_seen_idx
else:
return len(history_data) # 在历史数据范围内未出现
else:
return len(history_data) # 从未出现
def _calculate_theoretical_omission(self, num_str, history_data):
"""计算理论遗漏期数"""
# 基于概率计算理论遗漏
total_periods = len(history_data)
# 如果号码从未出现,理论遗漏为总期数
if num_str not in self.number_positions:
return total_periods
# 计算历史出现频率
positions = self.number_positions[num_str]
frequency = len([p for p in positions if p >= len(self.data) - len(history_data)])
if frequency == 0:
return total_periods
# 基于频率计算理论遗漏
avg_interval = total_periods / frequency
return avg_interval
class PatternModel:
"""形态模式模型 - 分析号码形态模式"""
def __init__(self, data):
self.data = data
def calculate_scores(self, history_data, lookback_window=100):
"""基于形态模式计算分数"""
if len(history_data) < 20:
return np.zeros(1000)
recent_data = history_data.iloc[-lookback_window:] if len(history_data) > lookback_window else history_data
# 计算形态分布
pattern_counts = recent_data['形态'].value_counts()
total = pattern_counts.sum()
# 计算奇偶比、大小比分布
parity_counts = recent_data['奇偶比'].value_counts()
size_counts = recent_data['大小比'].value_counts()
scores = np.zeros(1000)
for num in range(1000):
num_str = str(num).zfill(3)
d1, d2, d3 = int(num_str[0]), int(num_str[1]), int(num_str[2])
# 形态分数
unique_count = len(set([d1, d2, d3]))
if unique_count == 1:
pattern = '豹子'
elif unique_count == 2:
pattern = '组三'
else:
pattern = '组六'
pattern_score = pattern_counts.get(pattern, 0) / total
# 奇偶比分数
odd_count = sum(1 for d in [d1, d2, d3] if d % 2 == 1)
parity = f"{odd_count}:{3 - odd_count}"
parity_score = parity_counts.get(parity, 0) / total if total > 0 else 0
# 大小比分数
big_count = sum(1 for d in [d1, d2, d3] if d >= 5)
size = f"{big_count}:{3 - big_count}"
size_score = size_counts.get(size, 0) / total if total > 0 else 0
# 模式连续性分析
continuity_score = self._calculate_continuity_score(num_str, recent_data)
# 综合分数
scores[num] = (pattern_score * 0.4 + parity_score * 0.2 +
size_score * 0.2 + continuity_score * 0.2)
return scores
def _calculate_continuity_score(self, num_str, recent_data):
"""计算模式连续性分数"""
# 检查当前模式是否与近期模式有连续性
digits = [int(d) for d in num_str]
current_pattern = self._get_pattern(digits)
# 获取近期模式序列
recent_patterns = []
for _, row in recent_data.iterrows():
pattern_digits = [row['百位'], row['十位'], row['个位']]
recent_patterns.append(self._get_pattern(pattern_digits))
# 分析模式转移概率
if len(recent_patterns) >= 5:
last_pattern = recent_patterns[-1]
# 计算从上一个模式到当前模式的转移频率
transitions = 0
total_transitions = 0
for i in range(len(recent_patterns) - 1):
if recent_patterns[i] == last_pattern and recent_patterns[i + 1] == current_pattern:
transitions += 1
if recent_patterns[i] == last_pattern:
total_transitions += 1
if total_transitions > 0:
transition_prob = transitions / total_transitions
else:
transition_prob = 0.1 # 默认概率
else:
transition_prob = 0.1
return transition_prob
def _get_pattern(self, digits):
"""获取数字的模式特征"""
unique_count = len(set(digits))
odd_count = sum(1 for d in digits if d % 2 == 1)
big_count = sum(1 for d in digits if d >= 5)
return (unique_count, odd_count, big_count)
# ====================================================
# 集成预测模型
# ====================================================
class EnsemblePredictor:
"""集成6个模型的预测器"""
def __init__(self, data):
self.data = data
self.models = {
'history': HistoryReverseModel(data),
'sum': SumFrequencyModel(data),
'span': SpanTrendModel(data),
'hotcold': HotColdModel(data),
'omission': OmissionModel(data),
'pattern': PatternModel(data)
}
# 模型权重(可根据历史表现调整)
self.weights = {
'history': 0.20, # 历史逆向模型
'sum': 0.15, # 和值频率模型
'span': 0.15, # 跨度趋势模型
'hotcold': 0.20, # 冷热号模型
'omission': 0.15, # 遗漏分析模型
'pattern': 0.15 # 形态模式模型
}
def predict(self, history_data, lookback_window=100):
"""集成预测"""
print("运行集成模型预测...")
progress = AdvancedProgressBar(total=6, desc="模型计算", bar_length=30)
all_scores = {}
model_results = {}
# 运行每个模型
for i, (model_name, model) in enumerate(self.models.items()):
progress.update(i + 1, f"运行{model_name}模型")
scores = model.calculate_scores(history_data, lookback_window)
all_scores[model_name] = scores
model_results[model_name] = scores
progress.complete()
# 加权集成
final_scores = np.zeros(1000)
for model_name, scores in all_scores.items():
weight = self.weights[model_name]
# 归一化每个模型的分数
if scores.max() > 0:
normalized_scores = scores / scores.max()
else:
normalized_scores = scores
final_scores += normalized_scores * weight
# 添加随机扰动以打破平局
final_scores += np.random.uniform(0, 0.000001, 1000)
return final_scores, model_results
# ====================================================
# 数据加载函数
# ====================================================
def load_historical_data(file_path):
"""加载历史数据"""
print(f"正在加载数据文件: {file_path}")
# 尝试多种编码
encodings = ['utf-8', 'gbk', 'gb2312', 'gb18030', 'latin1', 'cp1252']
df = None
for encoding in encodings:
try:
df = pd.read_csv(file_path, encoding=encoding, header=None)
print(f"✓ 成功使用 {encoding} 编码加载数据,原始形状: {df.shape}")
break
except Exception as e:
print(f" {encoding} 编码失败: {str(e)[:50]}...")
continue
if df is None:
raise ValueError(f"无法读取文件 {file_path},所有编码都失败了")
# 处理列
if df.shape[1] >= 3:
if df.shape[1] >= 5:
df = df.iloc[:, :5]
# 确保有足够的列再分配列名
if len(df.columns) >= 5:
df.columns = ['期号', '日期', '百位', '十位', '个位'][:len(df.columns)]
else:
# 如果列数不足,创建默认列名
df.columns = ['期号', '百位', '十位', '个位'][:len(df.columns)]
if '日期' not in df.columns:
df['日期'] = ''
elif df.shape[1] == 4:
df.columns = ['期号', '百位', '十位', '个位']
df['日期'] = ''
else: # 3列
df.columns = ['百位', '十位', '个位']
df['期号'] = range(len(df))
df['日期'] = ''
print(f" 处理后数据形状: {df.shape}")
# 清理数据
print("正在清理数据...")
for col in ['百位', '十位', '个位']:
if col in df.columns:
# 首先转换为字符串,然后移除非数字字符,再转换为数值
df[col] = df[col].astype(str).str.replace(r'\D', '', regex=True)
df[col] = pd.to_numeric(df[col], errors='coerce')
# 删除无效数据
original_count = len(df)
df = df.dropna(subset=['百位', '十位', '个位'])
# 确保数字在0-9范围内
for col in ['百位', '十位', '个位']:
if col in df.columns:
df = df[(df[col] >= 0) & (df[col] <= 9)]
# 创建开奖号码列 - 确保是三位数字字符串
df['开奖号码'] = df['百位'].astype(int).astype(str).str.zfill(1) + \
df['十位'].astype(int).astype(str).str.zfill(1) + \
df['个位'].astype(int).astype(str).str.zfill(1)
# 按顺序排序
if '期号' in df.columns:
try:
df['期号'] = pd.to_numeric(df['期号'], errors='coerce')
df = df.sort_values('期号').reset_index(drop=True)
except:
df['期号'] = range(len(df))
else:
df['期号'] = range(len(df))
print(f"✓ 数据清理完成: {original_count} -> {len(df)} 期有效数据")
print(f" 开奖号码示例: {df['开奖号码'].iloc[:3].tolist()}")
return df
def prepare_features(df):
"""准备特征数据"""
print("正在准备特征数据...")
# 计算和值
df['和值'] = df[['百位', '十位', '个位']].sum(axis=1)
# 计算跨度
df['跨度'] = df[['百位', '十位', '个位']].max(axis=1) - df[['百位', '十位', '个位']].min(axis=1)
# 判断形态
def get_pattern(row):
digits = [row['百位'], row['十位'], row['个位']]
unique_count = len(set(digits))
if unique_count == 1:
return '豹子'
elif unique_count == 2:
return '组三'
else:
return '组六'
df['形态'] = df.apply(get_pattern, axis=1)
# 奇偶比
def get_parity_ratio(row):
odd_count = sum(1 for d in [row['百位'], row['十位'], row['个位']] if d % 2 == 1)
return f"{odd_count}:{3 - odd_count}"
df['奇偶比'] = df.apply(get_parity_ratio, axis=1)
# 大小比
def get_size_ratio(row):
big_count = sum(1 for d in [row['百位'], row['十位'], row['个位']] if d >= 5)
return f"{big_count}:{3 - big_count}"
df['大小比'] = df.apply(get_size_ratio, axis=1)
print("✓ 特征数据准备完成")
return df
# ====================================================
# 核心:完整数据逆向分析引擎(集成版)
# ====================================================
class DeepReverseAnalyzerIntegrated:
"""深度逆向分析引擎 - 集成6个模型进行逆向分析"""
def __init__(self, data):
self.data = data
self.total_periods = len(data)
self.best_history_length = None
self.best_success_rate = 0
self.analysis_results = []
# 初始化集成预测器
self.ensemble_predictor = EnsemblePredictor(data)
# 预计算数据
print("预计算数据特征...")
progress = AdvancedProgressBar(total=4, desc="特征预计算", bar_length=30)
# 1. 计算所有号码的出现位置索引
progress.update(1, "计算号码位置...")
self.number_positions = defaultdict(list)
for idx, row in data.iterrows():
num_str = str(row['开奖号码'])
self.number_positions[num_str].append(idx)
# 2. 预计算和值、跨度、形态的分布
progress.update(2, "计算统计分布...")
self.sum_dist_cache = {}
self.span_dist_cache = {}
self.pattern_dist_cache = {}
window_sizes = [50, 100, 200, 500]
for window in window_sizes:
if window >= self.total_periods:
continue
recent_data = data.iloc[-window:]
self.sum_dist_cache[window] = recent_data['和值'].value_counts(normalize=True)
self.span_dist_cache[window] = recent_data['跨度'].value_counts(normalize=True)
self.pattern_dist_cache[window] = recent_data['形态'].value_counts(normalize=True)
# 3. 预计算热号数据
progress.update(3, "计算热号数据...")
self.hot_digits_cache = {}
for window in [20, 30, 50, 100]:
if window >= self.total_periods:
continue
recent_data = data.iloc[-window:]
all_digits = []
for _, row in recent_data.iterrows():
all_digits.extend([row['百位'], row['十位'], row['个位']])
self.hot_digits_cache[window] = Counter(all_digits)
progress.update(4, "完成")
progress.complete()
print("✓ 数据特征预计算完成")
def run_depth_analysis(self):
"""
真正的深度逆向分析:测试所有可能的周期长度
使用完整数据进行滑动窗口测试
"""
print(f"\n开始深度逆向分析...")
print(f"总数据期数: {self.total_periods}期")
# 确定测试的历史长度范围(覆盖所有期数)
# 从300期开始,到总期数-200(留200期用于验证)
min_history = 300
max_history = min(5000, self.total_periods - 200)
if max_history <= min_history:
print("数据量不足,使用经验参数")
self.best_history_length = min(2000, self.total_periods)
self.best_success_rate = 0.12
return []
# 选择测试的周期长度:10个点,覆盖从min_history到max_history
test_points = 10
step = max(200, (max_history - min_history) // test_points)
test_lengths = list(range(min_history, max_history + 1, step))[:test_points]
print(f"将测试 {len(test_lengths)} 个周期长度: {test_lengths}")
start_time = time.time()
analysis_results = []
# 创建进度条
progress = AdvancedProgressBar(total=len(test_lengths), desc="逆向分析进度")
for idx, history_len in enumerate(test_lengths):
progress.update(idx + 1, f"测试周期:{history_len}期")
# 使用完整滑动窗口测试该周期长度
success_rate, test_count = self._complete_test_history_length(history_len)
if success_rate is not None and test_count > 0:
analysis_results.append({
'历史长度': history_len,
'成功率': success_rate,
'测试次数': test_count,
'成功次数': int(success_rate * test_count)
})
progress.log(f"周期{history_len}期: 成功率={success_rate:.4%} (测试{test_count}次)")
# 关闭进度条
progress.complete()
# 分析结果排序
if analysis_results:
analysis_results.sort(key=lambda x: x['成功率'], reverse=True)
self.analysis_results = analysis_results
self.best_history_length = analysis_results[0]['历史长度']
self.best_success_rate = analysis_results[0]['成功率']
elapsed_time = time.time() - start_time
print(f"\n✓ 深度逆向分析完成,耗时: {elapsed_time:.1f}秒")
if analysis_results:
print(f"最佳周期长度: {self.best_history_length}期,成功率: {self.best_success_rate:.4%}")
return analysis_results
def _complete_test_history_length(self, history_len):
"""完整测试特定历史长度的预测效果"""
if history_len + 50 > self.total_periods:
return None, 0
success_count = 0
test_count = 0
# 使用滑动窗口覆盖所有可能的位置
# 从history_len开始,每次滑动10期,直到数据末尾
window_size = 20 # 每个窗口测试20期
step_size = 10 # 每次滑动10期
test_range_start = history_len
test_range_end = self.total_periods - window_size
if test_range_end <= test_range_start:
return None, 0
# 计算测试位置
window_starts = list(range(test_range_start, test_range_end, step_size))
# 限制最大测试窗口数,避免耗时过长
max_windows = 100
if len(window_starts) > max_windows:
# 均匀采样
step = len(window_starts) // max_windows
window_starts = window_starts[::step][:max_windows]
# 创建子进度条
window_progress = AdvancedProgressBar(total=len(window_starts), desc=f"测试窗口{history_len}期", bar_length=30)
for window_idx, window_start in enumerate(window_starts):
window_progress.update(window_idx + 1, f"窗口{window_idx + 1}/{len(window_starts)}")
# 训练数据:窗口前的历史数据
train_end = window_start
train_start = max(0, train_end - history_len)
train_data = self.data.iloc[train_start:train_end]
# 测试数据:当前窗口
test_data = self.data.iloc[window_start:window_start + window_size]
if len(train_data) < 100 or len(test_data) < 5:
continue
# 生成预测
predictions = self._generate_predictions(train_data)
# 测试预测效果
for _, row in test_data.iterrows():
test_num = str(row['开奖号码'])
if len(test_num) != 3 or not test_num.isdigit():
continue
# 检查是否命中
if self._check_hit(test_num, predictions):
success_count += 1
test_count += 1
window_progress.complete()
if test_count > 0:
return success_count / test_count, test_count
return None, 0
def _generate_predictions(self, history_data):
"""基于历史数据生成预测(使用集成模型)"""
if len(history_data) < 100:
return {'直选': [], '组三': [], '组六': []}
# 使用集成模型进行预测
final_scores, model_results = self.ensemble_predictor.predict(history_data, lookback_window=100)
# 获取分数最高的150个号码
top_indices = np.argsort(final_scores)[::-1][:150]
# 分类预测
predictions = {'直选': [], '组三': [], '组六': []}
for idx in top_indices:
num_str = str(idx).zfill(3)
score = final_scores[idx]
digits = [int(d) for d in num_str]
unique_count = len(set(digits))
if unique_count == 2:
predictions['组三'].append((num_str, score))
elif unique_count == 3:
predictions['组六'].append((num_str, score))
else:
predictions['直选'].append((num_str, score))
# 限制数量
predictions['直选'] = predictions['直选'][:30]
predictions['组三'] = predictions['组三'][:20]
predictions['组六'] = predictions['组六'][:20]
return predictions
def _check_hit(self, test_num, predictions):
"""检查是否命中"""
test_digits = [int(d) for d in test_num]
unique_count = len(set(test_digits))
# 检查直选命中
for num_str, _ in predictions['直选']:
if num_str == test_num:
return True
# 检查组三命中
if unique_count == 2:
test_digits_sorted = sorted(test_digits)
for num_str, _ in predictions['组三']:
pred_digits = [int(d) for d in num_str]
if sorted(pred_digits) == test_digits_sorted:
return True
# 检查组六命中
if unique_count == 3:
test_digits_sorted = sorted(test_digits)
for num_str, _ in predictions['组六']:
pred_digits = [int(d) for d in num_str]
if sorted(pred_digits) == test_digits_sorted:
return True
return False
def generate_final_predictions(self):
"""使用最佳周期长度生成最终预测"""
if self.best_history_length is None:
self.best_history_length = min(2000, self.total_periods)
self.best_success_rate = 0.12
print(f"\n使用最佳周期长度 {self.best_history_length} 期生成最终预测...")
# 使用最近的最佳周期长度数据
if self.total_periods < self.best_history_length:
recent_data = self.data
else:
recent_data = self.data.iloc[-self.best_history_length:]
# 生成预测
predictions = self._generate_predictions(recent_data)
print(f"✓ 生成 {len(predictions['直选'])} 个直选预测")
print(f"✓ 生成 {len(predictions['组三'])} 个组三预测")
print(f"✓ 生成 {len(predictions['组六'])} 个组六预测")
return predictions
# ====================================================
# 下一期预测专用函数
# ====================================================
def generate_next_period_predictions(analyzer, df, ensemble_predictor):
"""
专门预测下一期(数据库中没有的新一期)
使用所有历史数据和最佳周期长度
"""
print("\n" + "=" * 80)
print("开始预测下一期(数据库中没有的新一期)")
print("=" * 80)
# 显示最后几期数据
print(f"数据库中最后5期数据:")
last_5 = df.tail(5)
for idx, row in last_5.iterrows():
if '期号' in df.columns and '日期' in df.columns:
print(f" 第{row['期号']}期 ({row['日期']}): {row['开奖号码']}")
else:
print(f" 第{idx + 1}期: {row['开奖号码']}")
# 确定使用的历史数据长度
if analyzer.best_history_length:
history_len = analyzer.best_history_length
print(f"✓ 使用最佳历史长度: {history_len}期")
else:
history_len = min(2000, len(df))
print(f"✓ 使用默认历史长度: {history_len}期")
# 准备训练数据(所有历史数据)
if len(df) > history_len:
train_data = df.iloc[-history_len:]
print(f"✓ 使用最近{len(train_data)}期数据进行训练")
else:
train_data = df
print(f"✓ 使用所有{len(train_data)}期数据进行训练")
print(
f"✓ 最后1期训练数据: 第{df.iloc[-1]['期号'] if '期号' in df.columns else len(df)}期 - {df.iloc[-1]['开奖号码']}")
# 生成下一期预测
print("\n运行6个集成模型预测下一期...")
# 方法1:使用集成预测器
final_scores, model_results = ensemble_predictor.predict(train_data, lookback_window=100)
# 方法2:使用传统的Numba加速计算(作为对比验证)
traditional_scores = calculate_traditional_scores(train_data)
# 融合两种方法的分数(70%集成模型 + 30%传统方法)
combined_scores = final_scores * 0.7 + traditional_scores * 0.3
# 获取前30个最有可能的号码
top_indices = np.argsort(combined_scores)[::-1][:30]
# 分类预测结果
predictions = {'直选': [], '组三': [], '组六': []}
for idx in top_indices:
num_str = str(idx).zfill(3)
score = combined_scores[idx]
digits = [int(d) for d in num_str]
unique_count = len(set(digits))
if unique_count == 2:
predictions['组三'].append((num_str, score))
elif unique_count == 3:
predictions['组六'].append((num_str, score))
else:
predictions['直选'].append((num_str, score))
# 限制数量
predictions['直选'] = predictions['直选'][:15]
predictions['组三'] = predictions['组三'][:10]
predictions['组六'] = predictions['组六'][:10]
# 计算每个模型的推荐度
model_recommendations = {}
for model_name, scores in model_results.items():
model_top = np.argsort(scores)[::-1][:10]
model_recommendations[model_name] = [str(i).zfill(3) for i in model_top]
print(f"\n✓ 下一期预测生成完成")
print(f" 直选推荐: {len(predictions['直选'])}个")
print(f" 组三推荐: {len(predictions['组三'])}个")
print(f" 组六推荐: {len(predictions['组六'])}个")
return predictions, model_recommendations, combined_scores
def calculate_traditional_scores(history_data):
"""传统的Numba加速计算方法(作为验证和补充)"""
if len(history_data) < 100:
return np.zeros(1000)
# 使用最近100期数据计算分布
recent_100 = history_data.iloc[-min(100, len(history_data)):]
recent_50 = history_data.iloc[-min(50, len(history_data)):]
# 准备numba需要的数组
sum_counts = np.zeros(28)
sum_dist = recent_100['和值'].value_counts()
for val, count in sum_dist.items():
sum_counts[int(val)] = count
span_counts = np.zeros(10)
span_dist = recent_100['跨度'].value_counts()
for val, count in span_dist.items():
span_counts[int(val)] = count
all_digits = []
for _, row in recent_50.iterrows():
all_digits.extend([row['百位'], row['十位'], row['个位']])
digit_counts = np.zeros(10)
for d in all_digits:
digit_counts[int(d)] += 1
pattern_counts = np.zeros(3)
pattern_dist = recent_100['形态'].value_counts()
pattern_map = {'豹子': 0, '组三': 1, '组六': 2}
for pattern, count in pattern_dist.items():
if pattern in pattern_map:
pattern_counts[pattern_map[pattern]] = count
total_sum = max(1, sum_counts.sum())
total_span = max(1, span_counts.sum())
total_pattern = max(1, pattern_counts.sum())
scores = calculate_scores_numba(
sum_counts,
span_counts,
digit_counts,
pattern_counts,
total_sum,
total_span,
total_pattern,
len(recent_50)
)
return scores
# ====================================================
# 走势分析
# ====================================================
def analyze_recent_trends(df, recent_periods=50):
"""分析近期走势"""
if len(df) < recent_periods:
recent_periods = len(df)
recent_data = df.iloc[-recent_periods:]
# 形态分布
pattern_counts = recent_data['形态'].value_counts()
pattern_percent = {k: v / len(recent_data) * 100 for k, v in pattern_counts.items()}
# 热号分析
recent_30 = df.iloc[-min(30, len(df)):]
all_digits = []
for _, row in recent_30.iterrows():
all_digits.extend([row['百位'], row['十位'], row['个位']])
digit_counts = Counter(all_digits)
hot_numbers = [int(d) for d, _ in digit_counts.most_common(3)]
# 冷号分析
recent_100 = df.iloc[-min(100, len(df)):]
cold_counts = Counter()
for _, row in recent_100.iterrows():
cold_counts.update([row['百位'], row['十位'], row['个位']])
cold_numbers = []
for d in range(10):
if cold_counts.get(d, 0) <= max(1, len(recent_100) // 20):
cold_numbers.append(int(d))
# 常见和值范围
recent_and_values = recent_data['和值'].values
if len(recent_and_values) > 0:
lower = int(np.percentile(recent_and_values, 20))
upper = int(np.percentile(recent_and_values, 80))
common_sum_range = f"{lower}-{upper}"
else:
common_sum_range = "4-20"
# 常见跨度
recent_spans = recent_data['跨度'].values
span_counts = Counter(recent_spans)
common_spans = [int(s) for s, _ in span_counts.most_common(5)]
# 常见奇偶比
parity_counts = Counter(recent_data['奇偶比'])
common_parity = [p for p, _ in parity_counts.most_common(2)]
# 常见大小比
size_counts = Counter(recent_data['大小比'])
common_size = [s for s, _ in size_counts.most_common(2)]
return {
'pattern_dist': pattern_percent,
'hot_numbers': hot_numbers,
'cold_numbers': cold_numbers[:3] if cold_numbers else [],
'common_sum_range': common_sum_range,
'common_spans': common_spans,
'common_parity': common_parity,
'common_size': common_size
}
# ====================================================
# 20元预算方案生成
# ====================================================
def generate_20yuan_plans(predictions):
"""生成20元预算方案"""
print("\n生成20元预算方案...")
# 提取各类预测
direct_predictions = predictions['直选'][:50] # 前50个直选
group3_predictions = predictions['组三'][:30] # 前30个组三
group6_predictions = predictions['组六'][:30] # 前30个组六
# 方案1: 均衡型 (直选:组三:组六 = 5:3:2 = 20元)
plan1 = {
'name': '均衡型20元方案',
'直选': [num for num, _ in direct_predictions[:5]],
'组三': [num for num, _ in group3_predictions[:3]],
'组六': [num for num, _ in group6_predictions[:2]],
'预算': 20,
'总注数': 10 # 5+3+2
}
# 方案2: 直选侧重型 (直选:组三:组六 = 7:2:1 = 20元)
plan2 = {
'name': '直选侧重型20元方案',
'直选': [num for num, _ in direct_predictions[:7]],
'组三': [num for num, _ in group3_predictions[:2]],
'组六': [num for num, _ in group6_predictions[:1]],
'预算': 20,
'总注数': 10 # 7+2+1
}
# 方案3: 组选侧重型 (直选:组三:组六 = 2:4:4 = 20元)
plan3 = {
'name': '组选侧重型20元方案',
'直选': [num for num, _ in direct_predictions[:2]],
'组三': [num for num, _ in group3_predictions[:4]],
'组六': [num for num, _ in group6_predictions[:4]],
'预算': 20,
'总注数': 10 # 2+4+4
}
# 方案4: 组三强化型 (直选:组三:组六 = 3:5:2 = 20元)
plan4 = {
'name': '组三强化型20元方案',
'直选': [num for num, _ in direct_predictions[:3]],
'组三': [num for num, _ in group3_predictions[:5]],
'组六': [num for num, _ in group6_predictions[:2]],
'预算': 20,
'总注数': 10 # 3+5+2
}
return [plan1, plan2, plan3, plan4]
# ====================================================
# 下一期详细分析报告
# ====================================================
def generate_next_period_report(df, analyzer, predictions, model_recommendations,
combined_scores, output_path):
"""生成下一期详细预测报告"""
print(f"正在生成下一期预测报告: {output_path}")
with open(output_path, 'w', encoding='utf-8') as f:
f.write("=" * 100 + "\n")
f.write("福彩3D下一期深度逆向分析预测报告(6模型集成版)\n")
f.write("=" * 100 + "\n")
f.write(f"生成时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write(f"数据期数: {len(df)}期(数据库中已有的历史数据)\n")
f.write(f"预测目标: 下一期(第{len(df) + 1}期,数据库中不包含的新一期)\n")
f.write(f"预算方案: {BUDGET}元\n")
f.write("使用模型: HistoryReverseModel, SumFrequencyModel, SpanTrendModel,\n")
f.write(" HotColdModel, OmissionModel, PatternModel\n")
f.write("=" * 100 + "\n\n")
# 一、数据库最后几期回顾
f.write("一、历史数据回顾\n")
f.write("-" * 80 + "\n")
f.write(f"数据库中最后10期开奖记录:\n")
last_10 = df.tail(10)
for i, (idx, row) in enumerate(last_10.iterrows()):
period_num = row['期号'] if '期号' in df.columns else idx + 1
date_str = row['日期'] if '日期' in df.columns and pd.notna(row['日期']) else "未知日期"
number = row['开奖号码']
sum_val = row['和值'] if '和值' in df.columns else sum([int(d) for d in str(number)])
span_val = row['跨度'] if '跨度' in df.columns else max([int(d) for d in str(number)]) - min(
[int(d) for d in str(number)])
pattern = row['形态'] if '形态' in df.columns else ""
f.write(f" 第{i + 1:2d}条记录: 第{period_num}期 ({date_str}) - {number}")
f.write(f" [和值:{sum_val} 跨度:{span_val} {pattern}]\n")
# 二、逆向分析结果
f.write("\n二、深度逆向分析结果\n")
f.write("-" * 80 + "\n")
if analyzer.analysis_results:
f.write(f"逆向分析测试了 {len(analyzer.analysis_results)} 个历史长度\n")
f.write(f"最佳历史长度: {analyzer.best_history_length}期\n")
f.write(f"最佳成功率: {analyzer.best_success_rate:.4%}\n\n")
f.write("历史长度成功率排名前5:\n")
for i, result in enumerate(analyzer.analysis_results[:5], 1):
f.write(
f" {i}. {result['历史长度']}期 - 成功率: {result['成功率']:.4%} (测试{result['测试次数']}次)\n")
else:
f.write("使用经验参数进行预测\n")
f.write(f"历史长度: {analyzer.best_history_length}期\n")
# 三、各模型推荐对比
f.write("\n三、6个模型独立推荐对比\n")
f.write("-" * 80 + "\n")
model_names_chinese = {
'history': '历史逆向模型',
'sum': '和值频率模型',
'span': '跨度趋势模型',
'hotcold': '冷热号模型',
'omission': '遗漏分析模型',
'pattern': '形态模式模型'
}
for model_name, recs in model_recommendations.items():
f.write(f"\n{model_names_chinese.get(model_name, model_name)}推荐前5:\n")
for i, num in enumerate(recs[:5], 1):
f.write(f" {i}. {num}\n")
# 四、集成预测结果
f.write("\n四、下一期集成预测结果\n")
f.write("-" * 80 + "\n")
f.write(f"预测期号: 第{len(df) + 1}期(数据库中不包含的新一期)\n")
f.write(f"预测时间: {datetime.now().strftime('%Y-%m-%d')} 之后\n")
f.write(
f"使用数据: 最近{analyzer.best_history_length if analyzer.best_history_length else len(df)}期历史数据\n")
f.write(f"集成方法: 6模型加权集成 + 传统方法验证\n\n")
# 直选预测结果
f.write("【下一期直选预测推荐】\n")
if predictions['直选']:
for i, (num_str, score) in enumerate(predictions['直选'][:10], 1):
digits = [int(d) for d in num_str]
sum_val = sum(digits)
span_val = max(digits) - min(digits)
unique_count = len(set(digits))
pattern = "豹子" if unique_count == 1 else "组三" if unique_count == 2 else "组六"
odd_count = sum(1 for d in digits if d % 2 == 1)
parity = f"{odd_count}:{3 - odd_count}"
big_count = sum(1 for d in digits if d >= 5)
size = f"{big_count}:{3 - big_count}"
# 计算置信度
confidence = min(score * 100, 99.99)
f.write(f"{i:2d}. {num_str} ({pattern}) - 置信度: {confidence:.2f}%\n")
f.write(f" 特征: 和值{sum_val} | 奇偶比{parity} | 大小比{size} | 跨度{span_val}\n")
else:
f.write(" 无直选推荐\n")
# 组三预测结果
f.write("\n【下一期组三预测推荐】\n")
if predictions['组三']:
for i, (num_str, score) in enumerate(predictions['组三'][:5], 1):
digits = [int(d) for d in num_str]
sum_val = sum(digits)
span_val = max(digits) - min(digits)
confidence = min(score * 100, 99.99)
repeat_digit = [d for d in digits if digits.count(d) > 1][0]
f.write(f"{i:2d}. {num_str} - 置信度: {confidence:.2f}%\n")
f.write(f" 特征: 和值{sum_val} | 跨度{span_val} | 重复数字{repeat_digit}\n")
else:
f.write(" 无组三推荐\n")
# 组六预测结果
f.write("\n【下一期组六预测推荐】\n")
if predictions['组六']:
for i, (num_str, score) in enumerate(predictions['组六'][:5], 1):
digits = [int(d) for d in num_str]
sum_val = sum(digits)
span_val = max(digits) - min(digits)
odd_count = sum(1 for d in digits if d % 2 == 1)
parity = f"{odd_count}:{3 - odd_count}"
confidence = min(score * 100, 99.99)
f.write(f"{i:2d}. {num_str} - 置信度: {confidence:.2f}%\n")
f.write(f" 特征: 和值{sum_val} | 奇偶比{parity} | 跨度{span_val}\n")
else:
f.write(" 无组六推荐\n")
# 五、统计分析和概率分布
f.write("\n五、统计分析与概率分布\n")
f.write("-" * 80 + "\n")
# 计算和值概率分布
f.write("和值概率分布(下一期预测):\n")
sum_probs = {}
for num in range(1000):
num_str = str(num).zfill(3)
digits = [int(d) for d in num_str]
sum_val = sum(digits)
sum_probs[sum_val] = sum_probs.get(sum_val, 0) + combined_scores[num]
# 归一化
total = sum(sum_probs.values())
if total > 0:
sorted_sums = sorted(sum_probs.items(), key=lambda x: x[1], reverse=True)[:10]
for sum_val, prob in sorted_sums:
percentage = (prob / total) * 100
f.write(f" 和值{sum_val:2d}: {percentage:5.2f}%\n")
# 计算形态概率
f.write("\n形态概率分布(下一期预测):\n")
pattern_probs = {'豹子': 0, '组三': 0, '组六': 0}
for num in range(1000):
num_str = str(num).zfill(3)
digits = [int(d) for d in num_str]
unique_count = len(set(digits))
score = combined_scores[num]
# 6. 生成专门的下期预测报告
os.makedirs(OUTPUT_DIR, exist_ok=True)
report_filename = f"下一期预测_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt"
output_path = os.path.join(OUTPUT_DIR, report_filename)
generate_next_period_report(df, analyzer, next_predictions, model_recs,
combined_scores, output_path)
total_elapsed_time = time.time() - total_start_time
# 7. 显示最终结果摘要
print("\n" + "=" * 80)
print("✓ 下一期预测完成!")
print(f"✓ 总耗时: {total_elapsed_time:.1f}秒")
print(f"✓ 预测报告: {report_filename}")
print(f"✓ 报告路径: {output_path}")
print("=" * 80)
# 显示关键预测结果
print("\n【下一期关键预测结果】")
print(f" 预测期号: 第{len(df) + 1}期")
print(f" 使用历史数据: {analyzer.best_history_length}期")
print(f" 预测成功率: {analyzer.best_success_rate:.4%}")
if next_predictions['直选']:
print("\n【下一期直选推荐前3名】")
for i, (num, score) in enumerate(next_predictions['直选'][:3], 1):
digits = [int(d) for d in num]
pattern = "豹子" if len(set(digits)) == 1 else "组三" if len(set(digits)) == 2 else "组六"
confidence = min(score * 100, 99.99)
print(f" {i}. {num} ({pattern}) - 置信度: {confidence:.2f}%")
# 显示各模型的一致推荐
print("\n【6个模型一致推荐的号码】")
consensus_numbers = find_consensus_recommendations(model_recs)
if consensus_numbers:
for i, num in enumerate(consensus_numbers[:5], 1):
print(f" {i}. {num}")
else:
print(" 无一致推荐的号码")
# 风险提示
print("\n【风险提示】")
print(" 1. 彩票预测仅供参考,不保证中奖")
print(" 2. 理性投注,量力而行")
print(" 3. 预测基于历史数据,未来结果具有不确定性")
except Exception as e:
print(f"\n❌ 程序运行出错: {str(e)}")
import traceback
traceback.print_exc()
# ====================================================
# 运行主程序
# ====================================================
if __name__ == "__main__":
# 检查是否需要安装依赖
try:
import numba
from scipy import stats
except ImportError as e:
print(f"正在安装依赖包: {e}")
import subprocess
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "numba", "scipy"])
print("依赖包安装完成,请重新运行程序")
except:
print("请手动安装依赖包: pip install numba scipy")
sys.exit(1)
main()
10万+

被折叠的 条评论
为什么被折叠?



