空调风系统:风管的分类

在空调工程中输送空气的风管包括:全空气系统的送(回)风风管、新风系统风管、排风系统风管、防排烟系统风管、加压送风系统风管、除尘系统风管、地下人防通风系统风管等等。其中全新风系统的送(回)风风管又可以主要细分为:舒适性空调风系统、恒温恒湿空调风系统、净化空调风系统等。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

一、按制作风管材质分类
按照风管材质分类,空调风系统的风管主要分为两大类:金属风管与非金属风管。
金属风管主要有普通钢板风管、镀锌钢板风管、彩色涂塑钢板风管、镀锌钢板螺旋圆风管、镀锌钢板螺旋扁圆风管、不锈钢板风管和铝合金板风管等。
非金属风管主要有酚醛铝箔复合板风管、聚氨酯铝箔复合板风管、玻璃纤维复合板风管、无机玻璃钢风管、硬聚氯乙烯风管、砖砌或钢筋混凝土板等土建风道等。
另外在空调工程中,还会用到聚酯纤维织物风管、金属圆形柔性风管和以高强度钢丝为骨架的铝箔聚酯膜复合柔性风管等。这些风管用于舒适性空调的送回风管道上。
二、按风管系统的工作压力分类
按照风管系统的工作压力分类,应该是暖通行业从业者都知道的一种分类方式。
按照工作压力分类,风管系统分为微压、低压系统、中压系统和高压系统。风管系统的工作压力及密封要求,在很多暖通行业相关规范中都有标明,其中以《通风与空调工程施工质量验收规范》(GB 50243-2016)里面的内容最为标准。具体如下图:
在这里插入图片描述
此外在《通风与空调工程施工质量验收规范》(GB 50243-2016)中关于风管系统在不同工作压力下的板材厚度也有非常明确的规定,这也是暖通设计师及机电安装预算员计算风管壁厚时,重要的参考依据。
规范中具有钢板风管板材厚度表,还有不锈钢板风管板材厚度表、铝板风管板材厚度表、硬聚氯乙烯风管厚度表、无机玻璃风管板材厚度表、有机玻璃风管板材厚度表等等,
下图为钢板风管板材厚度表
在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述

三、按风管的断面形状分类
按风管的断面形状分类,风管可以分为圆形、矩形、椭圆形还有配合建筑空间要求确定的其他形状。工程实践表面,圆形风管从节省材料和降低流动阻力来看,最为有利。
在这里插入图片描述在这里插入图片描述

在空调工程中,宜采用圆形风管或者长短边比不大于4的矩形断面风管,空间非常狭小的项目,其长短边之比也不应超过10。
在这里插入图片描述

四、扩展总结
在《建筑设计防火规范》(GB 50016-2014(2018年版))中指出:通风、空气调节系统的管道等,应采用不燃烧材料制作,但接触腐蚀性介质的风管和柔性接头,可采用难燃材料制作。所以在选择空调风管的材质时,务必采用不燃材料制作。

数据集介绍:野生动物与家畜多目标检测数据集 数据集名称:野生动物与家畜多目标检测数据集 数据规模: - 训练集:1,540张图片 - 验证集:377张图片 - 测试集:316张图片 分类类别: Brown-bear(棕熊)、Chicken(鸡)、Fox(狐狸)、Hedgehog(刺猬)、Horse(马)、Mouse(老鼠)、Sheep(绵羊)、Snake(蛇)、Turtle(龟)、Rabbit(兔)及通用object(物体)共11个类别 标注格式: YOLO格式标注,包含归一化坐标与类别索引,支持目标检测模型训练 数据特性: 涵盖航拍与地面视角,包含动物个体及群体场景,适用于复杂环境下的多目标识别 农业智能化管理: 通过检测家畜(鸡/马/绵羊等)数量及活动状态,辅助畜牧场自动化管理 生态监测系统: 支持野生动物(棕熊/狐狸/刺猬等)识别与追踪,用于自然保护区生物多样性研究 智能安防应用: 检测农场周边危险动物(蛇/狐狸),构建入侵预警系统 动物行为研究: 提供多物种共存场景数据,支持动物群体交互行为分析 高实用性标注体系: - 精细标注包含动物完整轮廓的边界框 - 特别区分野生动物与家畜类别,支持跨场景迁移学习 多维度覆盖: - 包含昼间/复杂背景/遮挡场景 - 涵盖陆地常见中小型动物与禽类 - 提供通用object类别适配扩展需求 工程适配性强: - 原生YOLO格式适配主流检测框架(YOLOv5/v7/v8等) - 验证集与测试集比例科学,支持可靠模型评估 生态价值突出: - 同步覆盖濒危物种(龟类)与常见物种 - 支持生物多样性保护与农业生产的双重应用场景
内容概要:本文档详细介绍了Python实现TSO-ELM(金枪鱼群优化算法优化极限学习机)多输入单输出回归预测的项目实例。极限学习机(ELM)作为一种快速训练的前馈神经网络算法,虽然具有训练速度快、计算简单等优点,但也存在局部最优解和参数敏感性的问题。金枪鱼群优化算法(TSO)通过模拟金枪鱼群体觅食行为,具有较强的全局搜索能力。将TSO与ELM结合形成的TSO-ELM模型,可以优化ELM的输入层和隐藏层之间的权重,提高回归预测的准确性。项目包括数据预处理、TSO优化、ELM回归模型训练和预测输出四个主要步骤,并提供了详细的代码示例。; 适合人群:对机器学习、优化算法有一定了解的数据科学家、算法工程师和研究人员,特别是那些希望深入理解智能优化算法在回归预测任务中的应用的人群。; 使用场景及目标:① 提升ELM在多输入单输出回归预测中的性能,特别是在处理非线性问题时的预测精度;② 解决ELM中的局部最优解和参数敏感性问题;③ 优化ELM的隐层权重和偏置值,提高模型的表达能力和预测能力;④ 在金融、气象、能源、医疗、交通等领域提供更准确的预测模型。; 阅读建议:本文档不仅提供了理论解释,还包含详细的代码实现,建议读者在阅读过程中结合代码进行实践,理解TSO-ELM模型的工作原理,并尝试调整参数以优化预测效果。同时,读者应关注TSO算法在高维复杂问题中的应用挑战,思考如何改进优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

制冷技术咨询与服务

您的鼓励是我创作的最大动力!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值