2017年伊朗国家队选拔赛第3题

I a I_a Ia △ A B C \triangle ABC ABC ∠ B A C \angle BAC BAC 内的旁心. 过 A , I a A, I_a A,Ia 的一个圆与 A B AB AB, A C AC AC 的延长线分别交于点 X X X, Y Y Y. 设 S S S, T T T 分别是 I a B I_aB IaB, I a C I_aC IaC 上的点, 使得 ∠ I a S C = ∠ I a Y C \angle I_aSC = \angle I_aYC IaSC=IaYC, ∠ I a T B = ∠ I a X B \angle I_aTB = \angle I_aXB IaTB=IaXB. K K K B T BT BT C S CS CS 的交点, Z Z Z I a K I_aK IaK S T ST ST 的交点. 求证: X X X, Z Z Z, Y Y Y 三点共线.

在这里插入图片描述

证明:

在这里插入图片描述

易知 △ B S C ∼ △ B X I a \triangle BSC \sim \triangle BXI_a BSCBXIa, △ C T B ∼ △ C Y I a \triangle CTB \sim \triangle CYI_a CTBCYIa.

∠ C K T = ∠ T B C + ∠ S C B = ∠ B I a X + ∠ C I a Y = π 2 − A 2 \angle CKT=\angle TBC+\angle SCB=\angle BI_aX+\angle CI_aY=\frac{\pi}{2}-\frac{A}{2} CKT=TBC+SCB=BIaX+CIaY=2π2A.

∴ S \therefore S S, I a I_a Ia, T T T, K K K 共圆 (设圆心为 O O O).

B B B 关于 I a C I_aC IaC 的对称点 B ′ B' B, 则 B I a = B ′ I a BI_a=B'I_a BIa=BIa, ∠ B I a B ′ = ∠ X I a Y = π − A \angle BI_aB'=\angle XI_aY=\pi-A BIaB=XIaY=πA, X I a = Y I a XI_a=YI_a XIa=YIa.

△ B X I a ≃ △ B ′ Y I a \triangle BXI_a \simeq \triangle B'YI_a BXIaBYIa.

B X + C Y = B ′ Y + C Y = C B ′ = B C BX+CY=B'Y+CY=CB'=BC BX+CY=BY+CY=CB=BC.

B C BC BC 上取一点 P P P, 使得 B P = B X BP=BX BP=BX, 则 C P = C Y CP=CY CP=CY.

△ C T B ∼ △ C Y I a \triangle CTB \sim \triangle CYI_a CTBCYIa C T ⋅ C I a = C Y ⋅ C B = C P ⋅ C B CT \cdot CI_a=CY \cdot CB=CP \cdot CB CTCIa=CYCB=CPCB

S S S, I a I_a Ia, T T T, K K K 共圆得 C T ⋅ C I a = C K ⋅ K S CT \cdot CI_a=CK \cdot KS CTCIa=CKKS, 所以 B B B, P P P, K K K, S S S 共圆.

类似地, 可得 C C C, P P P, K K K, T T T 共圆.

P P P 是完全四边形 K S I a T KSI_aT KSIaT 的密克点.

由密克点的性质, O O O, Z Z Z, P P P 共线, 且 Z Z Z P P P 关于 ⨀ O \bigodot O O 的反演点.

显然 X P XP XP B I a BI_a BIa 垂直平分(交于 L L L), Y P YP YP C I a CI_a CIa 垂直平分 (交于 M M M).

在这里插入图片描述

只需证 L M LM LM 经过 Z P ZP ZP 的中点 (记为 H H H).

H H H Z P ZP ZP 的垂线 l l l I a S I_aS IaS 于点 L ′ L' L, 交 I a T I_aT IaT M ′ M' M. 则 l l l P P P ⨀ O \bigodot O O 的根轴, O O O, S S S, P P P, T T T 共圆. (证明略)

∠ L ′ H P = ∠ L ′ L P = π 2 \angle L'HP=\angle L'LP=\frac{\pi}{2} LHP=LLP=2π, L L L, H H H, P P P, L ′ L' L 共圆.

∠ M ′ H P = ∠ M ′ M P = π 2 \angle M'HP=\angle M'MP=\frac{\pi}{2} MHP=MMP=2π, M M M, H H H, P P P, M ′ M' M 共圆.

由于 l l l P P P ⨀ O \bigodot O O 的根轴, L ′ P 2 = L ′ S ⋅ L ′ I a ⇒ △ L ′ P S ∼ △ L ′ I a P L'P^2=L'S \cdot L'I_a \Rightarrow \triangle L'PS \sim \triangle L'I_aP LP2=LSLIaLPSLIaP, M ′ P 2 = M ′ T ⋅ M ′ I a ⇒ △ M ′ P T ∼ △ M ′ I a P M'P^2=M'T \cdot M'I_a \Rightarrow \triangle M'PT \sim \triangle M'I_aP MP2=MTMIaMPTMIaP.

∠ S P T = π − ∠ S O T = π − 2 ∠ S I a T \angle SPT=\pi-\angle SOT=\pi-2\angle SI_aT SPT=πSOT=π2∠SIaT.

∠ L ′ P M ′ = ∠ S P T + ∠ S P L ′ + ∠ T P M ′ = ∠ S P T + ∠ P I a L ′ + ∠ P I a M ′ = π \angle L'PM'=\angle SPT+\angle SPL'+\angle TPM'=\angle SPT+\angle PI_aL'+\angle PI_aM'=\pi LPM=SPT+SPL+TPM=SPT+PIaL+PIaM=π.

L ′ L' L, P P P, M ′ M' M, I a I_a Ia 共圆, 进而 ∠ L ′ P M ′ = ∠ L P M ⇒ ∠ L P L ′ = ∠ M P M ′ \angle L'PM'=\angle LPM \Rightarrow \angle LPL'=\angle MPM' LPM=LPMLPL=MPM.

∠ L H L ′ = ∠ L P L ′ = ∠ M P M ′ = ∠ M H M ′ \angle LHL'=\angle LPL'=\angle MPM'=\angle MHM' LHL=LPL=MPM=MHM, 所以 L L L, H H H, M M M 共线.

证毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值