I a I_a Ia 是 △ A B C \triangle ABC △ABC 的 ∠ B A C \angle BAC ∠BAC 内的旁心. 过 A , I a A, I_a A,Ia 的一个圆与 A B AB AB, A C AC AC 的延长线分别交于点 X X X, Y Y Y. 设 S S S, T T T 分别是 I a B I_aB IaB, I a C I_aC IaC 上的点, 使得 ∠ I a S C = ∠ I a Y C \angle I_aSC = \angle I_aYC ∠IaSC=∠IaYC, ∠ I a T B = ∠ I a X B \angle I_aTB = \angle I_aXB ∠IaTB=∠IaXB. K K K 是 B T BT BT 与 C S CS CS 的交点, Z Z Z 是 I a K I_aK IaK 与 S T ST ST 的交点. 求证: X X X, Z Z Z, Y Y Y 三点共线.
证明:
易知 △ B S C ∼ △ B X I a \triangle BSC \sim \triangle BXI_a △BSC∼△BXIa, △ C T B ∼ △ C Y I a \triangle CTB \sim \triangle CYI_a △CTB∼△CYIa.
∠ C K T = ∠ T B C + ∠ S C B = ∠ B I a X + ∠ C I a Y = π 2 − A 2 \angle CKT=\angle TBC+\angle SCB=\angle BI_aX+\angle CI_aY=\frac{\pi}{2}-\frac{A}{2} ∠CKT=∠TBC+∠SCB=∠BIaX+∠CIaY=2π−2A.
∴ S \therefore S ∴S, I a I_a Ia, T T T, K K K 共圆 (设圆心为 O O O).
作 B B B 关于 I a C I_aC IaC 的对称点 B ′ B' B′, 则 B I a = B ′ I a BI_a=B'I_a BIa=B′Ia, ∠ B I a B ′ = ∠ X I a Y = π − A \angle BI_aB'=\angle XI_aY=\pi-A ∠BIaB′=∠XIaY=π−A, X I a = Y I a XI_a=YI_a XIa=YIa.
△ B X I a ≃ △ B ′ Y I a \triangle BXI_a \simeq \triangle B'YI_a △BXIa≃△B′YIa.
B X + C Y = B ′ Y + C Y = C B ′ = B C BX+CY=B'Y+CY=CB'=BC BX+CY=B′Y+CY=CB′=BC.
在 B C BC BC 上取一点 P P P, 使得 B P = B X BP=BX BP=BX, 则 C P = C Y CP=CY CP=CY.
由 △ C T B ∼ △ C Y I a \triangle CTB \sim \triangle CYI_a △CTB∼△CYIa 得 C T ⋅ C I a = C Y ⋅ C B = C P ⋅ C B CT \cdot CI_a=CY \cdot CB=CP \cdot CB CT⋅CIa=CY⋅CB=CP⋅CB
由 S S S, I a I_a Ia, T T T, K K K 共圆得 C T ⋅ C I a = C K ⋅ K S CT \cdot CI_a=CK \cdot KS CT⋅CIa=CK⋅KS, 所以 B B B, P P P, K K K, S S S 共圆.
类似地, 可得 C C C, P P P, K K K, T T T 共圆.
P P P 是完全四边形 K S I a T KSI_aT KSIaT 的密克点.
由密克点的性质, O O O, Z Z Z, P P P 共线, 且 Z Z Z 为 P P P 关于 ⨀ O \bigodot O ⨀O 的反演点.
显然 X P XP XP 被 B I a BI_a BIa 垂直平分(交于 L L L), Y P YP YP 被 C I a CI_a CIa 垂直平分 (交于 M M M).
只需证 L M LM LM 经过 Z P ZP ZP 的中点 (记为 H H H).
过 H H H 作 Z P ZP ZP 的垂线 l l l 交 I a S I_aS IaS 于点 L ′ L' L′, 交 I a T I_aT IaT 于 M ′ M' M′. 则 l l l 为 P P P 和 ⨀ O \bigodot O ⨀O 的根轴, O O O, S S S, P P P, T T T 共圆. (证明略)
∠ L ′ H P = ∠ L ′ L P = π 2 \angle L'HP=\angle L'LP=\frac{\pi}{2} ∠L′HP=∠L′LP=2π, L L L, H H H, P P P, L ′ L' L′ 共圆.
∠ M ′ H P = ∠ M ′ M P = π 2 \angle M'HP=\angle M'MP=\frac{\pi}{2} ∠M′HP=∠M′MP=2π, M M M, H H H, P P P, M ′ M' M′ 共圆.
由于 l l l 是 P P P 和 ⨀ O \bigodot O ⨀O 的根轴, L ′ P 2 = L ′ S ⋅ L ′ I a ⇒ △ L ′ P S ∼ △ L ′ I a P L'P^2=L'S \cdot L'I_a \Rightarrow \triangle L'PS \sim \triangle L'I_aP L′P2=L′S⋅L′Ia⇒△L′PS∼△L′IaP, M ′ P 2 = M ′ T ⋅ M ′ I a ⇒ △ M ′ P T ∼ △ M ′ I a P M'P^2=M'T \cdot M'I_a \Rightarrow \triangle M'PT \sim \triangle M'I_aP M′P2=M′T⋅M′Ia⇒△M′PT∼△M′IaP.
∠ S P T = π − ∠ S O T = π − 2 ∠ S I a T \angle SPT=\pi-\angle SOT=\pi-2\angle SI_aT ∠SPT=π−∠SOT=π−2∠SIaT.
∠ L ′ P M ′ = ∠ S P T + ∠ S P L ′ + ∠ T P M ′ = ∠ S P T + ∠ P I a L ′ + ∠ P I a M ′ = π \angle L'PM'=\angle SPT+\angle SPL'+\angle TPM'=\angle SPT+\angle PI_aL'+\angle PI_aM'=\pi ∠L′PM′=∠SPT+∠SPL′+∠TPM′=∠SPT+∠PIaL′+∠PIaM′=π.
L ′ L' L′, P P P, M ′ M' M′, I a I_a Ia 共圆, 进而 ∠ L ′ P M ′ = ∠ L P M ⇒ ∠ L P L ′ = ∠ M P M ′ \angle L'PM'=\angle LPM \Rightarrow \angle LPL'=\angle MPM' ∠L′PM′=∠LPM⇒∠LPL′=∠MPM′.
∠ L H L ′ = ∠ L P L ′ = ∠ M P M ′ = ∠ M H M ′ \angle LHL'=\angle LPL'=\angle MPM'=\angle MHM' ∠LHL′=∠LPL′=∠MPM′=∠MHM′, 所以 L L L, H H H, M M M 共线.
证毕.