此星光明
博士,地图制图和地理信息工程专业,主要涉及Google Earth Engine、PIE-Engine、Planetary Computer、AI Earth、中科星图等云平台的遥感生态云计算研究(多源遥感和机器学习相结合),适用建筑、气象、农业、水利等各个专业云计算。2022年云计算领域博客之星TOP3,2023年CSDN博客之星TOP13,华为云云享专家、MVP,阿里云社区、51CTO博客专家博主。
展开
-
GEE教程:基于MCD64A1数据提取BAI值并导出为CSV文件(之提取至点)
接下来,我们定义一个函数addBAI// 获取年份// 获取前一年// 定义前一年开始日期// 定义当前年份结束日期// 创建一个点几何对象var baiCollection = ee.ImageCollection('MODIS/006/MCD64A1') // 加载MODIS的烧毁日期数据集.filterDate(start, end) // 根据定义的时间范围过滤数据// 选择“BurnDate”波段。原创 2025-05-17 17:54:36 · 3 阅读 · 1 评论 -
GEE训练教程:使用Landsat 8影像数据计算归一化植被指数(NDVI),并分析不同时间段内的植被变化
本文介绍了如何使用Landsat影像数据在Google Earth Engine(GEE)平台上计算归一化植被指数(NDVI),并分析不同时间段的植被变化。首先,获取Landsat 8影像集合并定义相关波段。接着,通过掩膜函数去除云和饱和像素,处理影像数据。随后,选择两个时间段(2019年和2020年)计算中位数合成影像,并可视化结果。通过定义NDVI计算函数,生成2019年和2020年的NDVI图层。原创 2025-05-16 15:22:45 · 13 阅读 · 0 评论 -
GEE 训练教——利用MODIS MOD16A2数据ET(蒸散发数据)的时序图表分析
GEE 训练教——利用MODIS MOD16A2数据ET(蒸散发数据)的时序图表分析MODIS MOD16A2数据是美国国家航空航天局(NASA)的MODIS传感器所获取的陆地蒸散发和植被蒸腾量数据。该数据集提供了全球范围内每日和年度的蒸散发和植被蒸腾量数据,以及其他相关的地表水文过程数据。MOD16A2数据基于多种遥感数据和模型算法,可以用于监测陆地的水分循环和蒸散发过程。原创 2025-05-15 13:33:14 · 25 阅读 · 0 评论 -
GEE教程:如何利用 GEE 的强大功能来分析和展示土壤特性(OpenLandMap/SOL/SOL_TEXTURE-CLASS_USDA-TT_M/v02数据)并且可视化土壤深度
接下来,我们定义可视化参数,以便在地图上清晰地显示土壤纹理类别。我们将选择一个调色板,并设置最小值和最大值,以适应土壤纹理类别的范围。min: 1.0,max: 12.0,我们将研究区域设置为整个印度。可以使用现成的矢量文件来定义该区域。我们为不同深度的土壤纹理定义调色板和名称,以便在图例中显示。原创 2025-05-14 19:10:37 · 15 阅读 · 0 评论 -
GEE 训练教程——使用 paint() 将矢量几何图形转换为图像
使用 paint() 将矢量几何图形转换为图像。* 这会生成一条 “瘦 ”线,用 8 邻域表示。* 此外,所有特征都将在像素中具有相同(指定)的数值。* 图像分辨率以像素为单位(即不指定比例)。原创 2025-05-13 11:40:31 · 117 阅读 · 0 评论 -
GEE数据提取:提取特定区域的CHIRPS降水数据,并将结果导出为CSV文件
首先,我们需要定义一个感兴趣的地理位置。// 边界城市在这段代码中,我们使用定义了一个点,并通过方法从城市边界数据集中筛选出与该点相交的城市边界。接下来,我们需要定义我们感兴趣的时间范围。//--------时间-------------------------------------------------------通过以上步骤,我们成功地使用Google Earth Engine提取了特定区域的降水数据,并将结果导出为CSV文件。这一过程展示了GEE在气候数据分析中的强大能力。原创 2025-05-12 12:53:31 · 36 阅读 · 0 评论 -
GEE教程:基于MODIS的地表温度(LST)数据,并生成一个动画GIF
首先,我们需要定义一个感兴趣的区域。我们将使用一个点和一个多边形来表示该区域。region =接下来,我们从FAO的GAUL数据集中加载国家边界,并将其添加到地图上。// 将国家边界添加到地图我们定义LST的可视化参数,以便为动画帧创建可视化图像。min: 13000, // 根据开尔文调整LST范围max: 16500, // 根据开尔文调整LST范围palette: ['D70404'],原创 2025-05-11 13:39:04 · 32 阅读 · 0 评论 -
GEE教程——使用 Google Earth Engine 成功地分析了特定区域的土壤容重,并可视化了不同深度的土壤数据
/ 你可以使用城市边界,并仅针对你的城市运行此代码在这段代码中,我们使用一个点的坐标来确定国家边界,并将其添加到地图上。print('统计信息 for ' + name, stat);});通过以上步骤,我们使用 Google Earth Engine 成功地分析了特定区域的土壤容重,并可视化了不同深度的土壤数据。最终,我们还创建了一个图例,以帮助用户更好地理解可视化结果。原创 2025-05-10 13:16:32 · 33 阅读 · 0 评论 -
GEE教程:使用Google Earth Engine提取了特定区域的风速数据,并将结果导出为CSV文件
首先,我们需要定义一个感兴趣的地理位置。// 边界城市在这段代码中,我们使用定义了一个点,并通过方法从城市边界数据集中筛选出与该点相交的城市边界。接下来,我们需要定义我们感兴趣的时间范围。通过以上步骤,我们成功地使用Google Earth Engine提取了特定区域的风速数据,并将结果导出为CSV文件。这一过程展示了GEE在气候数据分析中的强大能力。希望这篇博客对您在使用GEE时有所帮助!如果您有任何问题或建议,欢迎在评论区留言。原创 2025-05-09 15:35:59 · 45 阅读 · 0 评论 -
GEE训练教程——基于指定区域的全系Landsat影像的检索和下载
这段代码展示了如何使用 Google Earth Engine 处理 Landsat 数据以计算 NDVI,并对不同时间段的数据进行过滤和合并。通过这些步骤,我们可以有效地分析特定区域的植被变化情况。希望这篇博客对你理解 Landsat 数据处理有帮助!原创 2025-05-08 14:52:23 · 37 阅读 · 0 评论 -
GEE教程——使用 NASA 的 SMAP 数据集计算特定区域的水平亮温(Brightness Temperature),并在地图上进行可视化
GEE教程——使用 NASA 的 SMAP 数据集计算特定区域的水平亮温(Brightness Temperature),并在地图上进行可视化在本博客中,我们将使用 Google Earth Engine (GEE) 来计算特定区域的水平亮温(Brightness Temperature)。我们将使用 NASA 的 SMAP 数据集,并在地图上进行可视化。以下是详细步骤和代码解释。首先,我们需要定义一个点的地理位置,这里以瑞士的某个地点为例:2. 获取城市边界接下来,我们可以使用城市边界数据来限制我们的原创 2025-05-07 10:39:57 · 37 阅读 · 0 评论 -
GEE教程:利用 Sentinel-2 卫星影像数据计算指定区域的NDVI并可视化
接下来,我们定义研究区域(AOI),并将地图中心设置为该区域。这里我们使用一个存储在项目中的矢量文件。// 将地图中心设置为研究区域,缩放级别为5我们定义 NDVI 的可视化参数,包括最小值、最大值和调色板,以便在地图上清晰显示 NDVI 的分布。min: 0,max: 1,palette: ['red', 'yellow', 'green'], // 调色板:红色表示低 NDVI,绿色表示高 NDVI。原创 2025-05-06 13:10:08 · 30 阅读 · 0 评论 -
GEE教程——MODIS/061/MCD19A2_GRANULES数据进行特定区域的气溶胶光学深度(AOD)的下载
首先,我们定义一个感兴趣区域(Area of Interest, AOI)的几何形状,以便进行后续的分析。// 将地图中心设置在定义的流域上// 在地图上添加黑色轮廓的流域图层在这段代码中,我们使用了一个多边形来定义区域的边界,并将地图中心设置在该区域上。为了进行正确的光学深度计算,我们定义了一个缩放因子。通过以上步骤,我们成功计算并可视化了特定区域的气溶胶光学深度。这一过程展示了如何利用GEE进行环境监测和数据分析。希望这篇博客对您有所帮助!原创 2025-05-05 11:22:06 · 42 阅读 · 0 评论 -
Google Earth Engine(GEE)教程——分析和可视化非洲地区的土壤可提取镁含量(Magnesium Extractable)
首先,我们定义了一个包含多个点的几何区域,并使用FAO/GAUL数据集中的国家边界数据来过滤出这些点所在的国家。// 将国家边界添加到地图上// 将地图中心设置为几何区域我们定义了一个名为soil的函数,用于加载土壤数据、计算统计信息、并将结果导出到Google Drive。// 将土壤数据添加到地图上// 打印直方图// 计算统计信息}),});print('统计信息:' + name, stat);// 导出图像到Google Drive});原创 2025-05-04 12:17:29 · 31 阅读 · 0 评论 -
GEE教程训练:如何在 GEE 中使用 JavaScript 创建和操作地理对象(缓冲区1km和影像可视化)
在 GEE 中,我们处理的都是表示地理数据的对象,例如图像和区域。为了存储这些对象,我们使用变量。// 圣克鲁斯-德拉西埃拉的坐标// 在控制台中显示该点恭喜你!你已经在 Google Earth Engine 中迈出了使用 JavaScript 和地理对象的第一步。请查看地图和控制台,观察结果并继续你的学习旅程。通过 GEE,你可以探索和分析地理数据,助力环境监测和资源管理等多种应用。希望这篇博客能帮助你更好地理解 GEE 的基础知识!原创 2025-05-06 10:00:00 · 25 阅读 · 0 评论 -
GEE 训练教程——reduceNeighborhood(又名 “移动窗口”)reducer
探索 reduceNeighborhood(又名 “移动窗口”)reducer。原创 2025-05-02 13:01:10 · 76 阅读 · 0 评论 -
GEE教程(更新):基于Landsat C08 T1 L2(SR)数据和进行黄河流域的归一化建筑指数NDBI(不透水层)分析
更新公告:因为Landsat C01数据已经下架,所以这里更新了一下新的博客,重写了相关代码原始的博客链接如下:Google Earth Engine(GEE)——利用归一化建筑指数NDBI(不透水层)提取建筑物加载矢量数据:代码首先加载了一个存储在 Google Earth Engine 资产中的矢量数据(),该数据用于定义研究区域。使用 来加载并指定区域。影像质量控制函数 :计算归一化差异建筑指数 :可视化参数 :影像集的加载和处理:选择最佳影像:可视化影像:导出影像:影像结果原创 2025-05-07 10:30:00 · 37 阅读 · 0 评论 -
GEE教程:使用Google Earth Engine计算黑山的植被指数与蒸散发估算
通过数据集筛选出蒙特内哥罗的边界。本文通过Google Earth Engine计算了蒙特内哥罗地区的植被指数,并将其作为蒸散发的代理指标进行可视化和导出。这种方法可以为生态系统管理和水资源规划提供重要的数据支持。希望本文的介绍和代码示例能够帮助你更好地利用GEE进行地理空间分析。原创 2025-05-01 12:24:03 · 35 阅读 · 0 评论 -
GEE——基于Google Earth Engine的森林冠层高度可视化与分析(直方图和空间分布)瑞士为例
GEE——基于Google Earth Engine的森林冠层高度可视化与分析(直方图和空间分布)以瑞士为例。原创 2025-04-30 21:14:48 · 112 阅读 · 0 评论 -
GEE教程:处理和分析 SMAP 卫星获取的土壤湿度数据
这段代码适用于地理信息系统(GIS)和遥感数据分析领域,特别是在研究土壤水分变化时。主要功能是处理和分析 SMAP 卫星获取的土壤湿度数据。原创 2025-05-02 05:00:00 · 29 阅读 · 0 评论 -
GEE 训练教程:对特征集合中的一个(多个)属性(即列)进行还原,从而 这样就可以随时使用包括 median() 在内的各种还原器
对特征集合中的一个(多个)属性(即列)进行还原,从而 这样就可以随时使用包括 median() 在内的各种还原器。原创 2025-04-28 13:49:05 · 179 阅读 · 0 评论 -
GEE教程:使用Google Earth Engine进行西班牙地区的Landsat 9影像处理
通过以上步骤,我们完成了从导入数据到处理Landsat 9影像,并将其可视化显示在地图上的整个过程。如果需要进一步分析或应用这些影像数据,还可以根据需要进行更多的处理和导出操作。首先,我们导入了LSIB(Large Scale International Boundaries)国际边界数据作为要素集合(geometry)。字段值为“Spain”,从而提取出西班牙的边界。方法将影像集合中的影像拼接成一个完整的影像,方法则将其裁剪为西班牙的边界范围。值用于调整影像的亮度范围,用于调整影像的对比度。原创 2025-04-27 12:20:08 · 34 阅读 · 0 评论 -
GEE教程:基于Sentinel-2影像进行重点关注水体提取和浑浊度指数(NDTI)的计算
首先,我们需要定义一个多边形区域,作为我们分析的基础。[73.16313961489985, 16.699452834042162], // 多边形的第一个顶点[73.16313961489985, 16.263571982057467], // 多边形的第二个顶点[73.62593868716547, 16.263571982057467], // 多边形的第三个顶点[73.62593868716547, 16.699452834042162] // 多边形的第四个顶点(闭合多边形)原创 2025-04-26 10:10:13 · 36 阅读 · 0 评论 -
GEE训练教程——计算和可视化了归一化植被指数NDVI大于特定阈值的区域面积
首先,我们定义了一个几何点,表示我们感兴趣的区域。通过这段代码,我们成功地获取了某一地区的NDVI数据,并计算和可视化了NDVI大于特定阈值的区域面积。这种分析方法可以帮助我们监测植被的生长状况,为土地管理和农业决策提供重要依据。希望这篇博客能对你理解NDVI分析与可视化有所帮助!原创 2025-04-25 12:09:39 · 31 阅读 · 0 评论 -
GEE教程:使用Google Earth Engine将栅格数据转换为矢量数据:以流域地表水制图为例
本文通过Google Earth Engine将地表水的栅格数据转换为矢量数据,并以特定流域为例进行了展示。这种方法可以为水文分析、生态保护和环境监测等应用提供重要的数据支持。希望本文的介绍和代码示例能够帮助你更好地利用GEE进行地理空间分析。原创 2025-04-24 15:18:29 · 39 阅读 · 0 评论 -
GEE教程——进行了土壤可提取铁的分析,并将结果可视化展示和直方图展示
首先,我们定义一个多点几何区域,表示我们感兴趣的地点。接下来,我们从 FAO 的 GAUL 数据集中筛选出与该几何区域相交的国家边界。// 将国家边界添加到地图上// 将地图中心设置为几何区域我们定义一个名为soil的函数,该函数接受图像 ID、波段和名称作为参数,用于分析土壤可提取铁的含量。});print('统计信息: ' + name, stat);});原创 2025-04-23 10:23:26 · 30 阅读 · 0 评论 -
GEE教程——可视化植被健康指数(TVI,Tasselled Cap Vegetation Index)在特定区域(AOI)的变化
在本博客中,我们将介绍如何使用 Google Earth Engine (GEE) 计算和可视化植被健康指数(TVI,Tasselled Cap Vegetation Index)在特定区域(AOI)的变化。以下是实现这一过程的详细步骤。原创 2025-04-21 15:00:02 · 157 阅读 · 0 评论 -
GEE教程:利用sentinel-2计算了指定地区的 NDVI,并进行了可视化和统计分析(NDVI的直方图分布)
在本博客中,我们将介绍如何使用 Google Earth Engine (GEE) 计算指定地区的归一化植被指数(NDVI)。NDVI 是一种常用的遥感指标,用于评估植被覆盖状况。以下是实现这一过程的详细步骤。原创 2025-04-20 13:17:32 · 45 阅读 · 0 评论 -
GEE 教程——基于LANDSAT 8、9 SR / Tier 1数据的NDVI、NDSI、NDWI、NDMI、NDGI的直方图和最大、小值统计以及下载
LANDSAT 8 & 9 / SR / Tier 1数据的NDVI、NDSI、NDWI、NDMI、NDGI的直方图和最大、小值统计以及下载。原创 2025-04-19 11:13:58 · 71 阅读 · 0 评论 -
GEE训练教程——分析土壤中可提取锌(zinc extractable)的空间分布
首先,我们定义一个包含三个点的几何区域,这些点将用于过滤与其重叠的国家边界数据。我们使用来创建这些点,并使用来获取包含这些点的国家边界数据。// 将国家边界图层添加到地图// 聚焦到定义的几何区域本文介绍了如何在Google Earth Engine中利用ee.Image和来处理和分析土壤中可提取锌的数据。通过使用可视化数据,使用ui.Chart生成统计图表,并通过将结果导出。最后,我们还创建了一个图例来帮助用户理解不同颜色所代表的锌浓度等级。希望这篇教程能帮助你开始使用GEE进行类似的土壤分析。原创 2025-04-18 18:48:54 · 27 阅读 · 0 评论 -
GEE教程:使用 Google Earth Engine (GEE) 进行两个横断面的像素计数,并可视化每个纬度的像素数量
101.55, 0.00], // 左下角[102.45, 0.00], // 右下角[105.7, 83.00], // 右上角[98.3, 83.00] // 左上角// 使用坐标创建多边形// 转换为 FeatureCollection 以便应用样式// 将多边形轮廓添加到地图,填充颜色设为透明axis: 1,})title: '每个纬度的像素计数',hAxis: {title: '纬度',},vAxis: {title: '像素计数',},});原创 2025-04-17 14:57:11 · 35 阅读 · 0 评论 -
GEE教程:加载和处理MODIS每日地表温度数据(LST),并分析特定区域(ROI)的温度变化时序趋势
通过以上步骤,我们成功地加载了MODIS每日地表温度数据,将每日数据聚合为16天间隔,计算了ROI区域的平均温度,并绘制了温度变化趋势图。这种方法可以应用于其他区域和数据集,帮助我们更好地理解和分析地表温度的变化趋势。如果你对GEE感兴趣,可以尝试运行以上代码,并根据需要调整参数和区域。希望这篇博客对你有所帮助!原创 2025-04-16 19:02:49 · 80 阅读 · 0 评论 -
Google Earth Engine :计算 R、K、LS、C 和 P 因子,估算土壤损失,并可视化土壤侵蚀结果
/ 年初// 下一年年初(覆盖完整的 'date1' 年)通过以上步骤,我们成功使用 Google Earth Engine 估算了土壤侵蚀,并可视化了不同类别的土壤损失。我们计算了 R、K、LS、C 和 P 因子,并生成了土壤损失的分类图和饼图。这些结果为土壤管理和保护提供了重要的信息。如果你有任何问题或想法,请随时与我联系!原创 2025-04-21 08:00:00 · 153 阅读 · 0 评论 -
GEE教程:使用 Google Earth Engine 可视化印度土壤水分数据的可视化带图例
接下来,我们设置可视化参数,以便在地图上清晰地展示土壤水分含量。我们将选择一个调色板,并设置最小值和最大值,以适应土壤水分的范围。min: 0.0,palette: ['083371',我们将研究区域设置为整个印度。可以使用现成的矢量文件来定义该区域。我们为不同深度的土壤水分定义调色板和名称,以便在图例中显示。原创 2025-04-14 07:48:37 · 149 阅读 · 0 评论 -
GEE训练教程——使用Google Earth Engine(GEE)来分析特定区域的土壤湿度
/ 将国家边界添加到地图首先,我们定义了一个几何图形(geometry),表示我们感兴趣的区域。接着,我们从FAO的GAUL数据集中获取国家边界,并将其添加到地图上。通过这段代码,我们展示了如何在Google Earth Engine中获取、处理和可视化土壤湿度数据。利用GEE的强大功能,我们可以轻松分析环境变化和土地利用管理,为研究和决策提供支持。希望这篇博客能够帮助你更好地理解如何使用GEE进行土壤湿度分析!原创 2025-04-13 17:25:20 · 43 阅读 · 1 评论 -
GEE训练教程——使用 Google Earth Engine 有效地分析和可视化特定国家的土壤水分含量
首先,我们需要设置国家边界并加载相关数据。// 你可以使用国家边界,并仅针对你的国家运行此代码// 将国家边界添加到地图在这段代码中,我们使用 FAO 数据集中的国家边界,并将其添加到地图上,方便后续分析。通过以上步骤,我们可以使用 Google Earth Engine 有效地分析和可视化特定国家的土壤水分含量。这种方法不仅适用于科学研究,也可以为农业和环境管理提供有价值的信息。希望本文能帮助你更好地理解和应用 GEE 进行地理空间数据分析。原创 2025-04-12 10:52:19 · 58 阅读 · 0 评论 -
GEE教程:使用GEE处理MODIS MCD19A2数据,并导出月度平均AOD数据(for循环)
首先,我们需要定义研究区域(AOI),并将地图居中显示在该区域。原创 2025-04-11 19:41:38 · 88 阅读 · 0 评论 -
GEE 教程:基于MODIS/006/MOD44W数据的可视化印度地区的土壤盐分可视化
这篇博客将指导你使用 Google Earth Engine (GEE) 可视化印度地区的土壤盐分数据,并创建一个自定义图例。原创 2025-04-10 09:57:09 · 52 阅读 · 0 评论 -
GEE教程:基于CHIRPS和TERRACLIMATE数据计算标准化降水蒸散指数 (SPEI干旱指数),可视化干旱严重程度
标准化降水蒸散指数 (SPEI) 是一种用于量化干旱严重程度的统计指标。与标准化降水指数 (SPI) 不同,SPEI 不仅考虑降水,还考虑潜在蒸散量 (PET),这反映了大气对水的需求。这使得 SPEI 成为一种更敏感的干旱指标,尤其是在温度和蒸散在水资源可用性中起重要作用的地区。原创 2025-04-07 14:56:15 · 281 阅读 · 0 评论 -
GEE训练教程:计算了1980–2020特定区域的风速,并生成了时间序列图表,同时还将历史风速数据导出为CSV文件
首先,我们需要定义一个感兴趣区域(Region of Interest, ROI),该区域由多个地理坐标点构成。我们使用}),}),}),// 省略其它点...})]);在这段代码中,我们定义了多个地理坐标点,这些点将作为风速计算的基础区域。通过以上步骤,我们成功地计算了特定区域的风速,并生成了时间序列图表,同时还将历史风速数据导出为CSV文件。这一过程展示了Google Earth Engine在环境数据分析中的强大能力。希望这篇博客对您在使用GEE时有所帮助!原创 2025-04-05 10:44:08 · 61 阅读 · 0 评论