此星光明
博士,地图制图和地理信息工程专业,主要涉及Google Earth Engine、PIE-Engine、Planetary Computer、AI Earth、中科星图等云平台的遥感生态云计算研究(多源遥感和机器学习相结合),适用建筑、气象、农业、水利等各个专业云计算。2022年云计算领域博客之星TOP3,2023年CSDN博客之星TOP13,华为云云享专家、MVP,阿里云社区、51CTO博客专家博主。
展开
-
GEE——基于Google Earth Engine的森林冠层高度可视化与分析(直方图和空间分布)瑞士为例
GEE——基于Google Earth Engine的森林冠层高度可视化与分析(直方图和空间分布)以瑞士为例。原创 2025-04-30 21:14:48 · 2 阅读 · 0 评论 -
GEE 训练教程:对特征集合中的一个(多个)属性(即列)进行还原,从而 这样就可以随时使用包括 median() 在内的各种还原器
对特征集合中的一个(多个)属性(即列)进行还原,从而 这样就可以随时使用包括 median() 在内的各种还原器。原创 2025-04-28 13:49:05 · 66 阅读 · 0 评论 -
GEE教程:使用Google Earth Engine进行西班牙地区的Landsat 9影像处理
通过以上步骤,我们完成了从导入数据到处理Landsat 9影像,并将其可视化显示在地图上的整个过程。如果需要进一步分析或应用这些影像数据,还可以根据需要进行更多的处理和导出操作。首先,我们导入了LSIB(Large Scale International Boundaries)国际边界数据作为要素集合(geometry)。字段值为“Spain”,从而提取出西班牙的边界。方法将影像集合中的影像拼接成一个完整的影像,方法则将其裁剪为西班牙的边界范围。值用于调整影像的亮度范围,用于调整影像的对比度。原创 2025-04-27 12:20:08 · 23 阅读 · 0 评论 -
GEE教程:基于Sentinel-2影像进行重点关注水体提取和浑浊度指数(NDTI)的计算
首先,我们需要定义一个多边形区域,作为我们分析的基础。[73.16313961489985, 16.699452834042162], // 多边形的第一个顶点[73.16313961489985, 16.263571982057467], // 多边形的第二个顶点[73.62593868716547, 16.263571982057467], // 多边形的第三个顶点[73.62593868716547, 16.699452834042162] // 多边形的第四个顶点(闭合多边形)原创 2025-04-26 10:10:13 · 25 阅读 · 0 评论 -
GEE训练教程——计算和可视化了归一化植被指数NDVI大于特定阈值的区域面积
首先,我们定义了一个几何点,表示我们感兴趣的区域。通过这段代码,我们成功地获取了某一地区的NDVI数据,并计算和可视化了NDVI大于特定阈值的区域面积。这种分析方法可以帮助我们监测植被的生长状况,为土地管理和农业决策提供重要依据。希望这篇博客能对你理解NDVI分析与可视化有所帮助!原创 2025-04-25 12:09:39 · 23 阅读 · 0 评论 -
GEE教程:使用Google Earth Engine将栅格数据转换为矢量数据:以流域地表水制图为例
本文通过Google Earth Engine将地表水的栅格数据转换为矢量数据,并以特定流域为例进行了展示。这种方法可以为水文分析、生态保护和环境监测等应用提供重要的数据支持。希望本文的介绍和代码示例能够帮助你更好地利用GEE进行地理空间分析。原创 2025-04-24 15:18:29 · 26 阅读 · 0 评论 -
GEE教程——进行了土壤可提取铁的分析,并将结果可视化展示和直方图展示
首先,我们定义一个多点几何区域,表示我们感兴趣的地点。接下来,我们从 FAO 的 GAUL 数据集中筛选出与该几何区域相交的国家边界。// 将国家边界添加到地图上// 将地图中心设置为几何区域我们定义一个名为soil的函数,该函数接受图像 ID、波段和名称作为参数,用于分析土壤可提取铁的含量。});print('统计信息: ' + name, stat);});原创 2025-04-23 10:23:26 · 24 阅读 · 0 评论 -
GEE教程——可视化植被健康指数(TVI,Tasselled Cap Vegetation Index)在特定区域(AOI)的变化
在本博客中,我们将介绍如何使用 Google Earth Engine (GEE) 计算和可视化植被健康指数(TVI,Tasselled Cap Vegetation Index)在特定区域(AOI)的变化。以下是实现这一过程的详细步骤。原创 2025-04-21 15:00:02 · 130 阅读 · 0 评论 -
GEE教程:利用sentinel-2计算了指定地区的 NDVI,并进行了可视化和统计分析(NDVI的直方图分布)
在本博客中,我们将介绍如何使用 Google Earth Engine (GEE) 计算指定地区的归一化植被指数(NDVI)。NDVI 是一种常用的遥感指标,用于评估植被覆盖状况。以下是实现这一过程的详细步骤。原创 2025-04-20 13:17:32 · 40 阅读 · 0 评论 -
GEE 教程——基于LANDSAT 8、9 SR / Tier 1数据的NDVI、NDSI、NDWI、NDMI、NDGI的直方图和最大、小值统计以及下载
LANDSAT 8 & 9 / SR / Tier 1数据的NDVI、NDSI、NDWI、NDMI、NDGI的直方图和最大、小值统计以及下载。原创 2025-04-19 11:13:58 · 48 阅读 · 0 评论 -
GEE训练教程——分析土壤中可提取锌(zinc extractable)的空间分布
首先,我们定义一个包含三个点的几何区域,这些点将用于过滤与其重叠的国家边界数据。我们使用来创建这些点,并使用来获取包含这些点的国家边界数据。// 将国家边界图层添加到地图// 聚焦到定义的几何区域本文介绍了如何在Google Earth Engine中利用ee.Image和来处理和分析土壤中可提取锌的数据。通过使用可视化数据,使用ui.Chart生成统计图表,并通过将结果导出。最后,我们还创建了一个图例来帮助用户理解不同颜色所代表的锌浓度等级。希望这篇教程能帮助你开始使用GEE进行类似的土壤分析。原创 2025-04-18 18:48:54 · 24 阅读 · 0 评论 -
GEE教程:使用 Google Earth Engine (GEE) 进行两个横断面的像素计数,并可视化每个纬度的像素数量
101.55, 0.00], // 左下角[102.45, 0.00], // 右下角[105.7, 83.00], // 右上角[98.3, 83.00] // 左上角// 使用坐标创建多边形// 转换为 FeatureCollection 以便应用样式// 将多边形轮廓添加到地图,填充颜色设为透明axis: 1,})title: '每个纬度的像素计数',hAxis: {title: '纬度',},vAxis: {title: '像素计数',},});原创 2025-04-17 14:57:11 · 24 阅读 · 0 评论 -
GEE教程:加载和处理MODIS每日地表温度数据(LST),并分析特定区域(ROI)的温度变化时序趋势
通过以上步骤,我们成功地加载了MODIS每日地表温度数据,将每日数据聚合为16天间隔,计算了ROI区域的平均温度,并绘制了温度变化趋势图。这种方法可以应用于其他区域和数据集,帮助我们更好地理解和分析地表温度的变化趋势。如果你对GEE感兴趣,可以尝试运行以上代码,并根据需要调整参数和区域。希望这篇博客对你有所帮助!原创 2025-04-16 19:02:49 · 52 阅读 · 0 评论 -
Google Earth Engine :计算 R、K、LS、C 和 P 因子,估算土壤损失,并可视化土壤侵蚀结果
/ 年初// 下一年年初(覆盖完整的 'date1' 年)通过以上步骤,我们成功使用 Google Earth Engine 估算了土壤侵蚀,并可视化了不同类别的土壤损失。我们计算了 R、K、LS、C 和 P 因子,并生成了土壤损失的分类图和饼图。这些结果为土壤管理和保护提供了重要的信息。如果你有任何问题或想法,请随时与我联系!原创 2025-04-21 08:00:00 · 129 阅读 · 0 评论 -
GEE教程:使用 Google Earth Engine 可视化印度土壤水分数据的可视化带图例
接下来,我们设置可视化参数,以便在地图上清晰地展示土壤水分含量。我们将选择一个调色板,并设置最小值和最大值,以适应土壤水分的范围。min: 0.0,palette: ['083371',我们将研究区域设置为整个印度。可以使用现成的矢量文件来定义该区域。我们为不同深度的土壤水分定义调色板和名称,以便在图例中显示。原创 2025-04-14 07:48:37 · 144 阅读 · 0 评论 -
GEE训练教程——使用Google Earth Engine(GEE)来分析特定区域的土壤湿度
/ 将国家边界添加到地图首先,我们定义了一个几何图形(geometry),表示我们感兴趣的区域。接着,我们从FAO的GAUL数据集中获取国家边界,并将其添加到地图上。通过这段代码,我们展示了如何在Google Earth Engine中获取、处理和可视化土壤湿度数据。利用GEE的强大功能,我们可以轻松分析环境变化和土地利用管理,为研究和决策提供支持。希望这篇博客能够帮助你更好地理解如何使用GEE进行土壤湿度分析!原创 2025-04-13 17:25:20 · 35 阅读 · 1 评论 -
GEE训练教程——使用 Google Earth Engine 有效地分析和可视化特定国家的土壤水分含量
首先,我们需要设置国家边界并加载相关数据。// 你可以使用国家边界,并仅针对你的国家运行此代码// 将国家边界添加到地图在这段代码中,我们使用 FAO 数据集中的国家边界,并将其添加到地图上,方便后续分析。通过以上步骤,我们可以使用 Google Earth Engine 有效地分析和可视化特定国家的土壤水分含量。这种方法不仅适用于科学研究,也可以为农业和环境管理提供有价值的信息。希望本文能帮助你更好地理解和应用 GEE 进行地理空间数据分析。原创 2025-04-12 10:52:19 · 46 阅读 · 0 评论 -
GEE教程:使用GEE处理MODIS MCD19A2数据,并导出月度平均AOD数据(for循环)
首先,我们需要定义研究区域(AOI),并将地图居中显示在该区域。原创 2025-04-11 19:41:38 · 69 阅读 · 0 评论 -
GEE 教程:基于MODIS/006/MOD44W数据的可视化印度地区的土壤盐分可视化
这篇博客将指导你使用 Google Earth Engine (GEE) 可视化印度地区的土壤盐分数据,并创建一个自定义图例。原创 2025-04-10 09:57:09 · 45 阅读 · 0 评论 -
GEE教程:基于CHIRPS和TERRACLIMATE数据计算标准化降水蒸散指数 (SPEI干旱指数),可视化干旱严重程度
标准化降水蒸散指数 (SPEI) 是一种用于量化干旱严重程度的统计指标。与标准化降水指数 (SPI) 不同,SPEI 不仅考虑降水,还考虑潜在蒸散量 (PET),这反映了大气对水的需求。这使得 SPEI 成为一种更敏感的干旱指标,尤其是在温度和蒸散在水资源可用性中起重要作用的地区。原创 2025-04-07 14:56:15 · 216 阅读 · 0 评论 -
GEE训练教程:计算了1980–2020特定区域的风速,并生成了时间序列图表,同时还将历史风速数据导出为CSV文件
首先,我们需要定义一个感兴趣区域(Region of Interest, ROI),该区域由多个地理坐标点构成。我们使用}),}),}),// 省略其它点...})]);在这段代码中,我们定义了多个地理坐标点,这些点将作为风速计算的基础区域。通过以上步骤,我们成功地计算了特定区域的风速,并生成了时间序列图表,同时还将历史风速数据导出为CSV文件。这一过程展示了Google Earth Engine在环境数据分析中的强大能力。希望这篇博客对您在使用GEE时有所帮助!原创 2025-04-05 10:44:08 · 54 阅读 · 0 评论 -
GEE训练教程:分析特定区域的植被指数(EVI),并进行植物生长季节的表型分类和时序可视化
)]),通过以上步骤,我们成功地使用 Google Earth Engine 分析了植被指数,并对植物生长季节进行了表型分类。这种方法为研究特定区域的植物生长动态提供了强有力的工具。如果您对这个过程有任何问题或想法,请随时与我联系!原创 2025-04-04 11:21:39 · 55 阅读 · 0 评论 -
GEE训练教程:Google Earth Engine中分析特定区域的归一化植被指数(NDVI)以及计算植被覆盖区域
首先,我们需要定义一个多边形作为我们的感兴趣区域(ROI)。接下来,我们将地图中心设置为该几何体,并调整缩放级别。// 可以通过此函数更改缩放级别通过以上步骤,我们成功地分析了特定区域的NDVI,并计算了植被覆盖的面积和相关的统计值。这一过程展示了如何利用Google Earth Engine进行遥感数据分析,为环境监测和管理提供了有力的支持。原创 2025-04-03 11:40:30 · 69 阅读 · 0 评论 -
GEE训练教程:利用Landsat 8影像计算MNDWI(修正的归一化水体指数),并通过图层可视化结果
首先,我们定义了一个多边形作为我们的感兴趣区域(ROI)。var roi =] */通过这段代码,我们成功地计算了MNDWI并识别了水体和湿地。此方法对于水资源管理和生态保护具有重要意义。希望这篇博客能帮助你更好地理解如何使用Google Earth Engine进行水体和湿地的遥感分析!原创 2025-04-08 08:00:00 · 64 阅读 · 0 评论 -
GEE训练教程:基于Landsat 9的NDBI 和 NBR2指数和卷积映射特定区域的城市密度
var roi =] */通过以上步骤,我们成功地使用 Google Earth Engine 处理了 Landsat 9 数据,分析并映射了特定区域的城市密度。这一过程展示了如何利用光谱指数和卷积技术来研究城市化进程。希望这篇博客能帮助你理解如何使用 GEE 进行城市密度分析。原创 2025-04-01 15:53:10 · 54 阅读 · 0 评论 -
GEE教程:利用DEM数据计算特定区域的洪水风险指数
首先,我们需要定义一个感兴趣的区域。以下代码段创建了一个多边形,表示我们要分析的地理区域。通过以上步骤,我们成功地计算了特定区域的洪水风险指数,并将结果可视化。使用Google Earth Engine,我们能够利用丰富的地理数据进行环境监测和分析,为决策提供科学依据。希望这个博客能帮助您理解如何在Google Earth Engine中计算洪水风险指数!原创 2025-03-31 17:30:02 · 314 阅读 · 0 评论 -
GEE训练教程:利用Sentinel-2影像计算水体深度计算和可视化分析
首先,我们定义了一个多边形作为我们的感兴趣区域(Geometry)。] */通过这段代码,我们成功计算了水深并进行了可视化。此方法对于水资源管理和环境监测具有重要意义。希望这篇博客能帮助你更好地理解如何使用Google Earth Engine进行水深计算和可视化!原创 2025-03-30 18:53:55 · 66 阅读 · 0 评论 -
GEE案例:利用 Landsat 数据和 Google Dynamic World 数据集进行热岛效应 (UHI)的分析和可视化
);通过以上步骤,我们成功使用 Google Earth Engine 计算了特定区域的城市热岛效应。这一过程展示了如何利用 Landsat 数据和 Google Dynamic World 数据集进行热岛效应的分析和可视化。希望这篇博客能帮助你理解如何使用 GEE 进行城市热岛效应的研究。// 1. 加载国家边界数据// 2. 定义感兴趣区域 (ROI)});// 3. 设置地图中心并添加图层// 4. 定义时间范围// 5. 获取城市区域数据。原创 2025-03-29 10:15:33 · 81 阅读 · 0 评论 -
GEE训练教程:利用JRC GHSL(全球人类住区数据集)来分析特定区域在1975年和2020年的居住区面积变化
var roi =] */通过这段代码,我们成功分析了特定区域在1975年和2020年的居住区面积变化,并生成了可视化图表。这种方法对于城市化进程的监测和研究具有重要意义。希望这篇博客能帮助你更好地理解如何使用Google Earth Engine进行城市化分析!原创 2025-03-28 19:07:44 · 42 阅读 · 0 评论 -
GEE教程:进行植被健康指数(VHI)计算和NDVI(归一化植被指数)、TCI(热条件指数)和VCI(植被条件指数)的计算
首先,我们定义了一个多边形作为我们的感兴趣区域(ROI)。}));通过这段代码,我们成功地计算了植被健康指数,并可视化了相关数据。这种方法可以帮助我们监测和分析植被健康状况,为环境保护和农业管理提供重要参考。希望这篇博客能帮助你更好地理解如何使用Google Earth Engine进行遥感数据分析!原创 2025-03-27 22:04:17 · 105 阅读 · 0 评论 -
GEE训练教程:基于sentinel-2影像的归一化浊度指数(NDTI)的计算可视化
var roi =原创 2025-03-26 22:27:20 · 63 阅读 · 0 评论 -
GEE训练教程:基于Landsat全系列影像的分析河流变化的代码解析和可视化
在本博客中,我们将逐步解析一段使用Google Earth Engine(GEE)进行Landsat影像分析的JavaScript代码。该代码主要用于识别和分析特定区域内的河流变化。首先,我们定义一个多边形作为我们的感兴趣区域(ROI):2. 加载Landsat影像数据集接下来,我们加载不同版本的Landsat影像数据集,包括Landsat 5、7、8和9:3. 设置地图中心我们将地图中心设置为我们的感兴趣区域:4. 定义年份列表我们定义一个年份列表,以便后续分析:5. 过滤影像集合的函数我原创 2025-03-25 13:35:18 · 31 阅读 · 0 评论 -
GEE训练教程:使用MODIS NDVI数据计算干旱区面积以山西省为例
通过这段代码,我们成功计算并可视化了特定区域的植被状况指数(VCI),并分析了干旱状况。这种方法对于监测干旱及其影响具有重要意义。希望这篇博客能帮助你更好地理解如何使用Google Earth Engine进行干旱分析!原创 2025-03-24 20:01:05 · 59 阅读 · 0 评论 -
GEE训练教程:使用Google Earth Engine进行特定区域的气溶胶光学深度(AOD)
首先,我们定义一个点作为我们的感兴趣区域(ROI),并使用国家边界进行过滤。// 您可以使用国家边界,并仅对您的国家运行此代码// 将国家边界添加到地图接下来,我们将地图中心设置为该点,并调整缩放级别。// 可以通过此函数更改缩放级别通过以上步骤,我们成功地分析了特定区域的气溶胶光学深度(AOD),并计算了气溶胶出现的频率。这一过程展示了如何利用Google Earth Engine进行遥感数据分析,为环境监测和管理提供了有力的支持。希望本博客能帮助您了解如何在GEE中进行AOD分析!原创 2025-03-23 11:08:21 · 44 阅读 · 0 评论 -
GEE训练教程:使用Google Earth Engine(GEE)来分析特定区域的矿物指标,包括铁氧化物和粘土矿物
首先,我们需要定义一个感兴趣的区域(几何体)。在这里,我们使用一个点来表示该区域。通过以上步骤,我们成功地分析了特定区域的铁氧化物和粘土矿物指标,并计算了相关的统计值。使用Google Earth Engine,我们能够利用丰富的遥感数据进行矿物资源的监测和分析,为地质研究和资源管理提供科学依据。原创 2025-03-22 10:10:29 · 41 阅读 · 0 评论 -
GEE训练教程:使用MODIS表面反射率数据,计算归一化水体指数(NDWI),并通过Otsu方法确定水体阈值
首先,我们定义一个多边形作为我们的感兴趣区域,并将其添加到地图中。通过以上步骤,我们成功地分析了特定区域的水体分布,计算了归一化水体指数(NDWI),并使用Otsu方法确定了水体阈值。这一过程展示了如何利用Google Earth Engine进行水体监测,为水资源管理和环境保护提供了重要的支持。希望本博客能帮助您了解如何在GEE中进行水体分析!原创 2025-03-21 12:37:38 · 215 阅读 · 0 评论 -
GEE训练教程——Google Earth Engine分析并可视化了特定区域的土壤氮含量
首先,我们定义一个包含多个点的几何体,这些点代表我们感兴趣的区域。通过以上步骤,我们成功地使用Google Earth Engine分析并可视化了特定区域的土壤氮含量。希望这个示例能帮助你理解如何使用GEE进行地理空间数据分析!原创 2025-03-19 11:37:18 · 162 阅读 · 0 评论 -
GEE训练教程——Google Earth Engine分析并可视化了特定区域的土壤可提取钾含量
首先,我们定义一个包含多个点的几何体,这些点代表我们感兴趣的区域。通过以上步骤,我们成功地使用Google Earth Engine分析并可视化了特定区域的土壤可提取钾含量。希望这个示例能够帮助你理解如何使用GEE进行地理空间数据分析!原创 2025-03-18 12:35:50 · 34 阅读 · 0 评论 -
GEE 训练教程——生成一幅图像,每个像素的值都是随机的ee.Image.random()
GEE 训练教程——生成一幅图像,每个像素的值都是随机的ee.Image.random()* 生成一幅图像,每个像素的值都是随机的。* 使用均匀分布或正态分布时,数值范围为 0.0 至 1.0。原创 2025-03-17 20:57:53 · 359 阅读 · 0 评论 -
GEE训练教程:实现国家边界筛选、发电厂数据统计分析和交互式可视化分析
多源数据融合:整合FAO行政边界数据和WRI能源数据动态统计分析:使用分组归约器实现实时数据聚合智能可视化基于装机容量的动态点大小按燃料类型分层的颜色编码交互式图例控件可扩展架构:通过修改国家名称参数即可分析不同地区通过本教程,您可以快速生成专业级的能源分析地图。建议尝试修改国家参数(如改为’China’),观察不同国家的能源结构特征。所有数据均为实时调用,确保分析结果的最新性。原创 2025-03-16 14:43:59 · 140 阅读 · 0 评论