经商——并查集、背包

链接:https://ac.nowcoder.com/acm/problem/14545
来源:牛客网

题目描述

小d是一个搞房地产的土豪。每个人经商都有每个人经商的手段,当然人际关系是需要放在首位的。

小d每一个月都需要列出来一个人际关系表,表示他们搞房地产的人的一个人际关系网,但是他的精力有限,对应他只能和能够接触到的人交际。比如1认识2,2认识3,那么1就可以接触3进行交际,当然1和2也可以交际。

小d还很精明,他知道他和谁交际的深获得的利益大,接下来他根据自己的想法又列出来一个利益表,表示他和这些人交际需要耗用多少精力,能够获得的利益值为多少。

小d想知道,他在精力范围内,能够获得的利益值到底是多少。

设定小d自己的编号为1.并且对应一个人的交际次数限定为1.

输入描述:
本题包含多组输入,第一行输入一个数t,表示测试数据的组数
每组数据的第一行输入三个数,N,M,C,表示这个人际关系网一共有多少个人,关系网的关系数,以及小d的精力值
接下来N-1行,每行两个数ai,bi。这里第i行表示和编号为i+1的人认识需要花费ai的精力,能够获得的利益值为bi。
再接下来M行,每行两个数x,y,表示编号为x的人能够和编号为y的人接触
t<=50
2<=N<=10000
1<=M<=10*N
1<=ai,bi<=10
1<=C<=500
1<=x,y<=N

输出描述:
输出包含一行,表示小d能够获得的最大利益值
示例1
输入
1
5 3 7
5 10
3 2
4 3
1 100
1 2
2 3
1 4
输出
10

题意:给出一个关系表,处在同一集合中的人能交际,要求求出在精力范围内最大的收益。

分析:很容易想到用并查集,求出能够交际的人,于是问题变成了从能够交际的人选出几个,在精力有限的情况下,获得最大利益,很明显的一个背包问题。

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<vector>
#include<queue>
#include<map>
#include<math.h>
#include<string.h>
#include<math.h>
#include<time.h>
#define inf 0x3fffffff
typedef long long ll;

using namespace std;

const int N=1e4+5;
int v[N];
int a[N];
int b[N];
int dp[505];
int find(int x)
{
    if(v[x]==x)return x;
    return v[x]=find(v[x]);
}
inline void merge(int x,int y)
{
    v[find(x)]=find(y);
}
int main()
{
    int t,n,m,c,x,y;
    cin>>t;
    while(t--)
    {
    cin>>n>>m>>c;
    for(int i=1;i<=n;i++)
    v[i]=i;
    for(int i=2;i<=n;i++)
    cin>>a[i]>>b[i];
    for(int i=1;i<=m;i++)
    {
        cin>>x>>y;
        merge(x,y);
    }
    int k=find(1);
    memset(dp,0,sizeof(dp));
    for(int i=2;i<=n;i++)
    {
        if(find(i)==k)
        {
        for(int j=c-a[i];j>=0;j--)
        {
            dp[j+a[i]]=max(dp[j]+b[i],dp[j+a[i]]);
        }
        }
    }
    cout<<dp[c]<<endl;
    }
    getchar();
    getchar();
}

错误:
merge中v[find(x)]=find(y)写成v[x]=find(y)
很明显没有认真想过,是把一个根的值赋给另一个根,这样在下次find的时候就会把这个根下所有的元素的值换成新根
dp[j+a[i]]=max(dp[j]+b[i],dp[j+a[i]]);写成
if(dp[j]>=0&&j+a[i]<=c)
dp[j+a[i]]=dp[j]+b[i];(事先memset(-1))
我的写法意思是在上一步基础上加,dp[j]=x的意思是如果消耗j精力能获得x的收益,最后还要遍历取max,其实写成在j精力范围内的收益更好
而且关键是我应该要和原来的值比较再更新。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值