数字图像仿射变换和射影变换

文章介绍了仿射变换和透视变换的基本概念,包括它们在二维和三维坐标系统中的应用。仿射变换包括平移、旋转、缩放等,保持图形的平直性和平行性,而透视变换则更为一般,不保持平行性,但保持重合关系和交比不变。这两种变换在线性代数和计算机图形学中有重要应用。
摘要由CSDN通过智能技术生成

       仿射变换和透视变换更直观的叫法可以叫做“平面变换”和“空间变换”或者“二维坐标变换”和“三维坐标变换”。如果这么命名的话,其实很显然,这俩是一回事,只不过一个是二维坐标(x,y),一个是三维坐标(x,y,z)。也就是:
仿射变换:

                                                

透视变换:

                                              

                             

        从另一个角度也能说明三维变换和二维变换的意思,仿射变换的方程组有6个未知数,所以要求解就需要找到3组映射点,三个点刚好确定一个平面。射影变换的方程组有8个未知数,所以要求解就需要找到4组映射点,四个点就刚好确定了一个三维空间。

        仿射变换主要包括平移变换、旋转变换、缩放变换(尺度变换)、倾斜变换(也叫错切、剪切变换、偏移变换)、翻转变换。有六个自由度

        仿射变换保持二维图形的“平直性”和“平行性”,但是角度会改变。

        “平直性”:变换后直线还是直线、圆弧还是圆弧。

        “平行性”:平行线还是平行线,直线上点的位置顺序不变。

数学公式如下:

                                         

 

射影变换:是最一般的线性变换。有8个自由度。

射影变换保持重合关系和交比不变。但不会保持平行性。

数学公式如下:

                              

        射影变换保持重合关系和交比不变。但不会保持平行性。即它会使得仿射变换产生非线性效应。

                                     

        其中大矩形中的4个元素组成的整体表示线性变换,比如scaling(尺度),shearing(剪切)和ratotion(旋转);椭圆部分表示平移的参数,一个确定在x方向上的平移一个确定在y方向上的平移;小矩形部分用于产生透视变换。从这里所以可以理解成仿射等是透视变换的特殊形式。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值