Laplace图像增强

本文介绍了如何利用拉普拉斯算子进行图像边缘提取和增强。通过应用二阶差分算子,特别是拉普拉斯核,可以有效突出图像的边缘细节。将边缘图像与原始图像相加,能显著提升图像的清晰度。示例中展示了采用特定拉普拉斯核进行卷积操作以获得增强效果的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于拉普拉斯算子的图像锐化

使用二阶差分算子(也可以用一阶差分算子, 也就是梯度)提取图像边缘图像。将边缘图像加到源图像上,实现增强边缘的功能。

laplacian核为

char arith[9] = { 0, -1, 0, -1, 4, -1, 0, -1, 0 };

如果用这个核卷积,得到是的边缘图像

再加上原像素灰度,得到核。

char arith[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CHAO_^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值