Learning Tensorflow(8)---条件判断语句

本文深入探讨了TensorFlow中tf.cond函数的使用方法,通过实例解释如何根据条件控制计算图中数据流的走向,展示了如何结合placeholder和feed进行参数传入,实现动态计算流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tensorflow 中使用tf.cond来控制数据的流向,类似于C语言中的if…else…

语法

format:tf.cond(pred, fn1, fn2, name=None)

例子:

z = tf.multiply(a, b)
result = tf.cond(x < y, lambda: tf.add(x, z), lambda: tf.square(y))

上面例子执行这样的操作,如果x<y则result这个操作是tf.add(x,z),反之则是tf.square(y)

z在cond只要至少被一个分支用到,则z被执行。

在实际使用中,可以结合placeholder和feed进行参数的传入,决定计算图中数据流的走向。


is_trainning = tf.placeholder(tf.int16)
feed = {inputs: batch_train_inputs,
      targets: batch_train_targets,
      is_trainning : 1}  
batch_cost, _, train_accuracy= sess.run([cost, optimizer,accuracy], feed)

logit = tf.cond(is_trainning > 0, 
                      lambda: final_fc,
                      lambda: tf.nn.softmax(final_fc),
                      name = 'logits')

注意不能tf.bool作为判断条件,因为传入的feed不能为Python bool(简单的False or True)
最简单的解决方法还是传递一个数值。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CHAO_^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值