数据结构实验之图论八:欧拉回路

题目描述

在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来。



能否走过这样的七座桥,并且每桥只走一次?瑞士数学家欧拉最终解决了这个问题并由此创立了拓扑学。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡七桥问题,并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。

你的任务是:对于给定的一组无向图数据,判断其是否成其为欧拉图?

输入

连续T组数据输入,每组数据第一行给出两个正整数,分别表示结点数目N(1 < N <= 1000)和边数M;随后M行对应M条边,每行给出两个正整数,分别表示该边连通的两个结点的编号,结点从1~N编号。 

输出

若为欧拉图输出1,否则输出0。

示例输入

1
6 10
1 2
2 3
3 1
4 5
5 6
6 4
1 4
1 6
3 4
3 6

示例输出

1

提示

如果无向图连通并且所有结点的度都是偶数,则存在欧拉回路,否则不存在。 
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int mp[1500][1500],vis[1500],a[1500];
void dfs(int x,int n)
{
   int i;
   vis[x]=1;
   for(i=1;i<=n;i++)
   {
      if(mp[x][i]&&!vis[i])
      {
         dfs(i,n);
      }
   }
}
int main()
{
    int T,n,m,u,v,i,flag,num;
    scanf("%d",&T);
    while(T--)
    {
       num=0;
       flag=0;
       memset(mp,0,sizeof(mp));
       memset(a,0,sizeof(a));
       memset(vis,0,sizeof(vis));
       scanf("%d%d",&n,&m);
       for(i=1;i<=m;i++)
       {
           scanf("%d%d",&u,&v);
           mp[u][v]=mp[v][u]=1;
           a[u]++;
           a[v]++;
       }
       for(i=1;i<=n;i++)
       {
           if(!vis[i])
           {dfs(i,n);
           num++;}
       }
       for(i=1;i<=n;i++)
       {
           if(a[i]%2!=0)
           {
              flag=1;
              break;
           }
       }
       if(flag==0&&num==1)
        printf("1\n");
       else printf("0\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值