题目描述
在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来。
能否走过这样的七座桥,并且每桥只走一次?瑞士数学家欧拉最终解决了这个问题并由此创立了拓扑学。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡七桥问题,并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。
你的任务是:对于给定的一组无向图数据,判断其是否成其为欧拉图?
输入
连续T组数据输入,每组数据第一行给出两个正整数,分别表示结点数目N(1 < N <= 1000)和边数M;随后M行对应M条边,每行给出两个正整数,分别表示该边连通的两个结点的编号,结点从1~N编号。
输出
若为欧拉图输出1,否则输出0。
示例输入
1 6 10 1 2 2 3 3 1 4 5 5 6 6 4 1 4 1 6 3 4 3 6
示例输出
1
提示
如果无向图连通并且所有结点的度都是偶数,则存在欧拉回路,否则不存在。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int mp[1500][1500],vis[1500],a[1500];
void dfs(int x,int n)
{
int i;
vis[x]=1;
for(i=1;i<=n;i++)
{
if(mp[x][i]&&!vis[i])
{
dfs(i,n);
}
}
}
int main()
{
int T,n,m,u,v,i,flag,num;
scanf("%d",&T);
while(T--)
{
num=0;
flag=0;
memset(mp,0,sizeof(mp));
memset(a,0,sizeof(a));
memset(vis,0,sizeof(vis));
scanf("%d%d",&n,&m);
for(i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
mp[u][v]=mp[v][u]=1;
a[u]++;
a[v]++;
}
for(i=1;i<=n;i++)
{
if(!vis[i])
{dfs(i,n);
num++;}
}
for(i=1;i<=n;i++)
{
if(a[i]%2!=0)
{
flag=1;
break;
}
}
if(flag==0&&num==1)
printf("1\n");
else printf("0\n");
}
return 0;
}