1108:向量点积计算

【题目描述】
在线性代数、计算几何中,向量点积是一种十分重要的运算。给定两个n维向量a=(a1,a2,…,an)和b=(b1,b2,…,bn),求点积a⋅b=a1b1+a2b2+…+anbn。

【输入】
第一行是一个整数n(1≤n≤1000);

第二行包含n个整数a1,a2,…,an;

第三行包含n个整数b1,b2,…,bn;

相邻整数之间用单个空格隔开。每个整数的绝对值都不超过1000。

【输出】
一个整数,即两个向量的点积结果。

【输入样例】
3
1 4 6
2 1 5
【输出样例】
36


【源代码】

#include <iostream>
using namespace std;

int main()
{
    int n;
    cin >> n;
    int a[1000] = {};
    int b[1000] = {};
    int ab = 0;
    int sum = 0;
    for (int i = 0; i < n; i++)
    {
        cin >> a[i];
    }
    for (int i = 0; i < n; i++)
    {
        cin >> b[i];
    }
    for (int i = 0; i < n; i++)
    {
        ab = a[i] * b[i];
        sum += ab;
    }
    cout << sum << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值