【题目描述】
在线性代数、计算几何中,向量点积是一种十分重要的运算。给定两个n维向量a=(a1,a2,…,an)和b=(b1,b2,…,bn),求点积a⋅b=a1b1+a2b2+…+anbn。
【输入】
第一行是一个整数n(1≤n≤1000);
第二行包含n个整数a1,a2,…,an;
第三行包含n个整数b1,b2,…,bn;
相邻整数之间用单个空格隔开。每个整数的绝对值都不超过1000。
【输出】
一个整数,即两个向量的点积结果。
【输入样例】
3
1 4 6
2 1 5
【输出样例】
36
【源代码】
#include <iostream>
using namespace std;
int main()
{
int n;
cin >> n;
int a[1000] = {};
int b[1000] = {};
int ab = 0;
int sum = 0;
for (int i = 0; i < n; i++)
{
cin >> a[i];
}
for (int i = 0; i < n; i++)
{
cin >> b[i];
}
for (int i = 0; i < n; i++)
{
ab = a[i] * b[i];
sum += ab;
}
cout << sum << endl;
return 0;
}