1108:向量点积计算
【题目描述】
在线性代数、计算几何中,向量点积是一种十分重要的运算。给定两个n维向量a=(a1,a2,…,an)和b=(b1,b2,…,bn),求点积a⋅b=a1b1+a2b2+…+anbn。
【输入】
第一行是一个整数n(1≤n≤1000);
第二行包含n个整数a1,a2,…,an;
第三行包含n个整数b1,b2,…,bn;
相邻整数之间用单个空格隔开。每个整数的绝对值都不超过1000。
【输出】
一个整数,即两个向量的点积结果。
【输入样例】
3
1 4 6
2 1 5
【输出样例】
36
#include<iostream>
using namespace std;
int main()
{ int i,n,a[1001],b[1001],result=0;
cin>>n;
for(i=1;i<=n;i++) cin>>a[i]; //for语句循环和分开写有什么区别?为什么答案不一样?
for(i=1;i<=n;i++) cin>>b[i];
for(i=1;i<=n;i++) result+=a[i]*b[i];
cout<<result<<endl;
return 0;
}