内卷之源:
https://leetcode.cn/problems/merge-intervals/
https://leetcode.cn/problems/SsGoHC/
https://www.nowcoder.com/practice
题目描述:
* 以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi]
* 请合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间
* 保证合并后的区间按区间起点升序排列。
* 说明:
1 <= intervals.length <= 10^4
intervals[i].length == 2
0 <= starti <= endi <= 10^4
测试用例:
Input | Output |
intervals = [[1,9],[2,5],[19,20],[10,11],[12,20],[0,3],[0,1],[0,2]] | [[0,9],[10,11],[12,20]] 解释:区间 [0,3],[0,1],[0,2],[1,9]和[2,5] 重叠,可合并为 [0,9] ; 区间 [19,20] 和 [12,20] 重叠,可合并为 [12,20] |
intervals = [[1,3],[2,6],[8,10],[15,18]] | [[1,6],[8,10],[15,18]] 解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6] |
intervals = [[10,30],[20,60],[80,100],[150,180]] | [[10,60],[80,100],[150,180]] |
intervals = [[1,4],[4,5]] | [[1,5]] |
intervals = [[3,6]] | [[3,6]] |
思路分析:
* 本题明显要进行大小比较。而输入是多个区间的集合,所以实际是对各区间的端点进行大小比较。
* 如果不考虑区间的排列顺序,以离散顺序进行比较,会存在重复运算。
* 因此先对区间进行排序 —— 比较各区间左端点(没必要同时比较左、右端点)。
* 按从前往后的顺序,依次判断相邻区间是否存在重叠区域:(若用下一个区间的右端点与上一个区间的右端点比较,则是有三种情况)
(1)如果下一个区间的左端点大于上一个区间的右端点,则两区间必不重合
(2)如果下一个区间的左端点不大于上一个区间的右端点,则两区间有重合区域,新区间的左端点为上一个区间的左端点,新区间的右端点为两区间右端点最大值
编程实现(C++):
/*
************************************************************
* @author SLF
* @version V1.0.0
* @date 22-May-2021
************************************************************
*/
#include <iostream>
#include <vector>
#include <map>
#include <unordered_map>
#include <algorithm>
using namespace::std;
class Solution {
public:
Solution() {}
~Solution() {}
/*
* 对输入手动排序
*/
vector<vector<int>> merge(vector<vector<int>>& intervals)
{
vector<vector<int>> out;
const int n = intervals.size();
if(!n)
{//不应在for循环中多次检查 out.empty()
return out;
}
sort(intervals.begin(), intervals.end()); //左端点相同时会继续判断右端点,实际没必要
out.push_back(intervals[0]);
for(int i = 1; n > i; ++i)
{
if(out.back()[1] < intervals[i][0])
{//经排序后,下一个区间的左端点大于上一个区间的右端点,则两区间不重合
out.push_back(intervals[i]);
}
else
{//经排序后,下一个区间的左端点不大于上一个区间的右端点,则两区间重合,更新合并区间的右端点
out.back()[1] = max(out.back()[1], intervals[i][1]);
}
}
return out;
}
/*
* 使用有序关联容器对输入自动排序
*/
// unordered_map<int, int> merge_sorted(multimap<int, int>& intervals)
vector<vector<int>> merge_sorted(multimap<int, int>& intervals)
{
// unordered_map<int, int> out; //输入有序,输出必然有序,所以没必要再定义一个有序容器 //但最终需要打印输出,而无序容器元素存储顺序并不是按照写入顺序
vector<vector<int>> out;
const int n = intervals.size();
if(!n)
{//不应在for循环中多次检查 out.empty()
return out;
}
//可重复关键字的关联容器不允许下标访问,使用迭代器
auto iter = intervals.cbegin();
out.push_back({iter->first, iter->second});
while(intervals.cend() != (++iter))
{
if(out.back()[1] < iter->first)
{//经排序后,下一个区间的左端点大于上一个区间的右端点,则两区间不重合
out.push_back({iter->first, iter->second});
}
else
{//经排序后,下一个区间的左端点不大于上一个区间的右端点,则两区间重合,更新合并区间的右端点
out.back()[1] = max(out.back()[1], iter->second);
}
}
return out;
}
};
int main(void)
{
//每个区间两个端点元素,每个端点元素取值0~10000,故数据类型实际可用unsigned short
vector<multimap<int, int>> intervals_sorted = {{{1,9}, {2,5}, {19,20}, {10,11}, {12,20}, {0,3}, {0,1}, {0,2}}, {{10,30},{20,60},{80,100},{150,180}}, {{1,3},{2,6},{8,10},{15,18}}, {{1,4},{4,5}}, {{3,6}}}; //关联式容器虽拥有自动排序功能,但是每安插一个新元素就进行一次排序,所以速度并不及序列式容器经常采用的手法:先安插元素,再统一排序
vector<vector<vector<int>>> intervals = {{{1,9}, {2,5}, {19,20}, {10,11}, {12,20}, {0,3}, {0,1}, {0,2}}, {{10,30},{20,60},{80,100},{150,180}}, {{1,3},{2,6},{8,10},{15,18}}, {{1,4},{4,5}}, {{3,6}}};
vector<vector<int>> out;
Solution sl;
const int n = intervals.size();
for(int i = 0; n > i; ++i)
{
out = sl.merge_sorted(intervals_sorted[i]);
for(const auto d : out)
{
cout << d[0] << ',' << d[1] << endl;
}
cout << endl;
out = sl.merge(intervals[i]);
for(const auto d : out)
{
cout << d[0] << ',' << d[1] << endl;
}
cout << endl;
}
return 0;
}
郑重提示:①解题思路非最优,覆盖条件可能不全,仅供练习参考。
②若有更佳思路或疑问,可在评论区留言相互讨论,不亦乐乎。
③本文不允许转载,若认可本文,可点赞收藏关注。