线性基性质功能代码实现三千字详解,附例题

目录

线性基性质

线性基构造

线性基求序列异或最大值

线性基求线性基异或最小值

线性基求原数列某异或值存在情况

线性基求第K小异或值

例题1

例题2

例题三 

例题4


线性基性质

1原序列中任意一个数都能通过线性基中一些数异或得到

2线性基可以表示0之外,原序列全部异或结果

3线性基异或不会出现0,该性质不由原序列决定,即使原序列有异或为0结果出现,但线性基并不会

4线性基一旦确定,便是唯一的

5线性基异或结果数为  (1<<cnt)  

线性基构造

void add(ll x)
{
    for(ll i=60; i>=0; i--)
    {
        if(!(x&(1ll<<i)))
        {
           if(!p[i])
            {
                p[i]=x;
                
                break;
                
            }
            else
                x^=p[i];
            
        }
    }
}

线性基求序列异或最大值

ll getmax(ll x)
{
   ll ans=0;
   
   for(ll i=60;i>=0;i--)
   {
       if((ans^p[i])>ans)
       {
           ans^=p[i];
           
       }
   }
   
   return ans;
   
}

线性基求线性基异或最小值

由于原序列与线性基异或最小值略有区别,故需要稍加留心。

线性基求原数列某异或值存在情况

bool check(ll y)
{
    for(int i=35;i>=0;i--)
    {
        if(y&(1ll<<i))
        {
            y^=x[i];

        }
    }

    return y==0;


}

线性基求第K小异或值

分为三步

一,重构线性基,线性基有i位时,对小于i位的地方全部异或上p[j]

获得非零重构线性基及其个数

二,判断是否原数列异或结果为0的,如果有,k-1

三,二进制分解k,如果k不在0--(1<<cnt)-1之内,则无解

否则,如果k二进制i位上有1,则结果异或重构线性基

ll rebuild()
{
    int cnt=0;
    
    for(ll i=62;i>=0;i--)
    {
        for(ll j=i-1;j>=0;j--)
        {
            if(p[i]&(1ll<<j))
                p[i]^=p[j];
            
        }
    }
    
    for(ll i=0;i<=62;i++)
    {
        if(p[i])
            d[cnt++]=p[i];
        
    }
}


ll kth(int k)
{
    if(k>=(1ll<<cnt))
        return -1;
    
    
    ll ans=0;
    
    for(int i=62;i>=0;i--)
    {
        if(k&(1ll<<i))
            ans^=d[i];
        
    }
    
    return ans;
    
}

例题1

【模板】线性基 - 洛谷

考察最大值查询

#include <bits/stdc++.h>
#include <cstring>
#include <vector>
#include <algorithm>
#include <cstdio>
# include<set>
#include <iostream>
using namespace std;
typedef  long long int   ll;

ll a[110];

ll p[100];

void get(ll x)
{
    for(ll i=62;i>=0;i--)
    {
        if(!(x&(1ll<<i)))
            continue;

        if(!p[i])
        {
            p[i]=x;

            break;

        }

        x^=p[i];

    }
}
int main()
{


    ll n;

    cin>>n;

    ll ans=0;


    for(int i=1;i<=n;i++)
    {
        cin>>a[i];

        get(a[i]);

    }


    for(ll i=62;i>=0;i--)
    {
        if(ans<(ans^p[i]))
        {
            ans=ans^p[i];

        }
    }

    cout<<ans;


    return 0;
}

例题2

考察存在情况的判断

xor序列

 

#include <bits/stdc++.h>
#include <cstring>
#include <vector>
#include <algorithm>
#include <cstdio>
# include<set>
#include <iostream>
using namespace std;
typedef  long long int   ll;

ll a[100000+10];
ll x[50];


void get(ll y)
{
    for(ll i=35;i>=0;i--)
    {
        if(!(y&(1ll<<i)))
            continue;

        if(x[i]==0)
        {
            x[i]=y;

            break;

        }
        else
            y^=x[i];
    }
}

bool check(ll y)
{
    for(int i=35;i>=0;i--)
    {
        if(y&(1ll<<i))
        {
            y^=x[i];

        }
    }

    return y==0;


}
int main()
{


       int n;

       cin>>n;

       for(int i=1;i<=n;i++)
       {
           cin>>a[i];

           get(a[i]);

       }

       int t;

       cin>>t;

       while(t--)
       {
           ll aa,bb;

           cin>>aa>>bb;

           bb^=aa;

           if(check(bb))
           {
               cout<<"YES"<<'\n';

           }
           else
           {
               cout<<"NO"<<'\n';

           }
       }



    return 0;
}

例题三 





[TJOI2008]彩灯 - 洛谷

我们把开关看成原数列,而灯的开闭就是其二进制分解的结果,两个或者若干个开关异或的结果就是最终灯的开闭情况,用线性基表示全部结果,考察性质5

#include <bits/stdc++.h>
#include <cstring>
#include <vector>
#include <algorithm>
#include <cstdio>
# include<set>
#include <iostream>
using namespace std;
typedef  long long int   ll;


ll p[100];

void get(ll x)
{

    for(int i=62;i>=0;i--)
    {
        if(!(x&(1ll<<i)))
            continue;

        if(p[i]==0)
        {
            p[i]=x;

            break;
        }
        else
        {
            x^=p[i];

        }
    }
}
int main()
{

      ll n,m;

      cin>>n>>m;


      for(int i=1;i<=m;i++)
      {
          string s;

          cin>>s;

          ll now=0;

          for(int j=0;j<s.length();j++)
          {
              if(s[j]=='O')
                now|=(1ll<<j);

          }

          get(now);

      }

      ll cnt=0;

      for(int i=0;i<=62;i++)
      {
          cnt+=(p[i]!=0);
      }

      ll ans=1;
      for(int i=1;i<=cnt;i++)
      {
          ans=ans*2%2008;

      }
      cout<<ans;

    return 0;
}

例题4

(Zero XOR Subset)-less

考察性质2,3.根据题意,我们发现一个异或子段可以是前缀异或数组相异或得到的,所以线性基可以记载全部n个异或前缀数组的异或情况,性质2保证了它们不可能存在异或结果是0的情况,性质3保证了这些子段的异或值都能够被表示。而值得注意的是,如果全部n个数异或之后不为0,那么我们线性基一定能够将这n个数都囊括进去,再利用这个大的前缀异或值去“分解”剩余小的。可如果n个数异或之后是0,那么至少这一结果不满足线性基表示非零的性质,从而无法被加入,无法参与切割,最右端点也不再是n

#include <bits/stdc++.h>
#include <cstring>
#include <vector>
#include <algorithm>
#include <cstdio>
# include<set>
#include <iostream>
using namespace std;
typedef  long long int   ll;

ll a[1000000];

ll p[100];

void get(ll x)
{
    for(ll i=62;i>=0;i--)
    {
        if(!(x&(1ll<<i)))
            continue;

        if(!p[i])
        {
            p[i]=x;

            break;

        }

        x^=p[i];

    }
}

int main()
{


    ll n;

    cin>>n;

    ll ans=0;


    ll now=0;


    for(int i=1;i<=n;i++)
    {
        cin>>a[i];

        now^=a[i];


        get(now);

    }


    int cnt=0;
    
    //其中可能会有0,但是线性基异或不会出现0
    
    //如果fn不是0,那么线性基就能表示出fn异或其余的全部值,

    if(now==0)
    {
        cout<<-1;
        
        return 0;
        
    }
    for(ll i=62;i>=0;i--)
    {
        if(p[i])
        {
            cnt++;

        }
    }

    cout<<cnt;


    return 0;
}

的异或集 

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秦三码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值