线性基详解+例题

 

线性基

  • 何为线性基?DEFINE:对于一个向量的集合,我们可以得到至少一个基向量集合,这个基向量集合就是线性基。线性基内的一个或多个基向量进行异或操作总能得到原向量集合中的向量。

性质

  1. 原集合中的任何一个数都可以由线性基中的一些数异或得到
  2. 线性基中任意一些数异或都不能得到0
  3. 线性基大小唯一。也就是基向量的个数唯一。
  4. 一个集合可以有多个大小相同但基向量不完全相同的线性基。

如何得到线性基?

定义数组p[ i ]表示二进制第 i 位为最高位的基向量。

我们需要得到一组基向量,类似线性代数中的阶梯型矩阵。

举个栗子

原集合:{7, 2, 3, 4} 集合向量对应二进制:

7:111

2:010

3:011

4:100

如何得到线性基?

(1)如果x的二进制最高位 i 对应的p[ i ]还没有值,那么插入p[ i ] = x

(2)如果x的二进制最高位 i 对应的p[ i ]已经被插入过了,那么x ^= p[ i ]

【这样做的目的就是为了保证下三角为0,保证我们的“矩阵”是个阶梯型矩阵】

 

看上图的线性基插入步骤

(1)遍历7,7的最高位是第2位。插入,那么第2位已经名花有主,p[2] = 7所以下面再插入的时候保证第2位为0才行

(2)遍历2,2的最高位是第1位。插入,那么第1位也已经名花有主,p[1] = 2

(3)遍历3,3的最高位是第1位。但是第1位已经名花有主了啊~于是我们将3异或p[1]也就是1. 那么1的最高位是0,可以插入,于是p[0] = 1

(4)遍历4,4的最高位是第二位。p[2] = 7了已经,所以我们看4的低位是不是可以插入呢?我们发现4的低位没有为1的位,于是4插入失败。【这也证明了第二条性质】

 【可能我说的都是卵,只是说了插入的步骤,但是线性基的正确性显然】

代码

void add(ll x)
{
    for(int i = maxBit - 1; i >= 0; -- i )
    {
        if(x >> i & 1)
        {
            if(!p[i]) { p[i] = x; break; }
            x ^= p[i];
        }
    }
}

按照上述步骤得到线性基之后,我们可以对线性基进行进一步的操作:进行异或操作使得到的p[i]最小(也就是尽可能将低位的1异或成0),这样我们可以保证线性基所有基向量异或起来可以得到最大的异或值

代码

    for(int i = maxBit - 1; i >= 0; -- i )
        for(int j = i - 1; j >= 0; -- j)
            if(p[i] >> j & 1)
                p[i] ^= p[j];

 那么如何得到第k小的异或值?

我们将线性基的基向量用Linear[ ]按照升序存储。定义ans = 0,那么我们从对k的每一个二进制位遍历,如果为1,那么异或起来Linear[ i ]。【正确性显然,可以举例验证】

Linear大小为cnt,那么可异或得到的数的个数为2^cnt - 1【正确性显然】(可以想下数学排列组合中学过的,cnt个数,每个数有两种选择,选/不选,所以一共是2^cnt种组合,但是这里要求我们不能都不选,所以2^cnt - 1)

当然还有一点需要注意

如果线性基的大小等于原集合的大小,那么原集合任意向量异或都不会得到0. 正确性也是显然的【参考性质2】

所以在求第k小时,我们需要判断是否可以得到0,如果可以得到0,0显然是最小的,那么我们就只需要找到第k-1小就可以了


P3812 【模板】线性基【XOR最大】

#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
inline ll read()
{
    ll x = 0, f = 1; char c = getchar();
    while(c < '0' || c > '9') { if(c == '-') f = -f; c = getchar(); }
    while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
    return x * f;
}

const int maxN = 55;
const int maxBit = 63;

ll n, a, p[maxBit];
ll cnt, Linear[maxBit];

void add(ll x)
{
    for(int i = maxBit - 1; i >= 0; -- i)
    {
        if(x >> i & 1)
        {
            if(!p[i]) {p[i] = x; break;}
            x ^= p[i];
        }
    }
}

ll solve()
{
    for(int i = maxBit - 1; i >= 0; -- i )
        for(int j = i - 1; j >= 0; -- j)
            if(p[i] >> j & 1)
                p[i] ^= p[j];
    cnt = 0;
    for(int i = 0; i < maxBit; ++ i )
        if(p[i]) Linear[cnt++] = p[i];
    ll ans = 0;
    for(int i = 0; i < cnt; ++ i )
        ans ^= Linear[i];
    return ans;
}

int main()
{
    n = read();
    for(int i = 0; i < n; ++ i )
        a = read(), add(a);
    printf("%lld\n", solve());
    return 0;
}

 [HDU 3949] XOR 【线性基_XOR第k小】

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
inline ll read()
{
    ll x = 0, f = 1; char c = getchar();
    while(c < '0' || c > '9') { if(c == '-') f = -f; c = getchar(); }
    while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
    return x * f;
}

const int maxN = 55;
const int maxBit = 63;

ll n, a, p[maxBit];
ll cnt, Linear[maxBit];

void add(ll x)
{
    for(int i = maxBit - 1; i >= 0; -- i )
    {
        if(x >> i & 1)
        {
            if(!p[i]) { p[i] = x; break; }
            x ^= p[i];
        }
    }
}

void op()
{
    for(int i = maxBit - 1; i >= 0; -- i )
        for(int j = i - 1; j >= 0; -- j )
            if(p[i] >> j & 1)
                p[i] ^= p[j];
    cnt = 0;
    for(int i = 0; i < maxBit; ++ i )
        if(p[i]) Linear[cnt++] = p[i];
}

int main()
{
    int cas = 0;
    int TAT; cin >> TAT;
    while(TAT -- )
    {
        memset(p, 0, sizeof(p));
        n = read();
        for(int i = 0; i < n; ++ i )
            a = read(), add(a);
        op();
        printf("Case #%d:\n", ++cas);
        int QAQ; cin >> QAQ;
        while(QAQ -- )
        {
            ll k = read();
            if(cnt != n) -- k;
            if(k >= 1ll << cnt)
            {
                printf("-1\n");
                continue;
            }
            ll ans = 0;
            for(int i = 0; i < cnt; ++ i )
                if(k >> i & 1) ans ^= Linear[i];
            printf("%lld\n", ans);
        }
    }
    return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
线性可以用来判断原集合是否封闭。如果一个元素能够被线性向量线性表示,那么它就可以由原集合中的元素经过线性组合得到,即原集合是封闭的。否则,如果有一个元素不能被线性向量线性表示,那么它就无法由原集合中的元素经过线性组合得到,即原集合不是封闭的。 具体地,我们可以通过将待判断的元素与线性向量进行异或操作来判断是否能够线性表示。如果待判断元素与线性向量进行异或操作后得到零向量,则说明待判断元素可以由线性向量线性表示。如果待判断元素与线性向量进行异或操作后得到非零向量,则说明待判断元素无法由线性向量线性表示。 因此,我们可以通过判断待判断元素与线性向量进行异或操作的结果是否为零向量来判断原集合是否封闭。如果待判断元素与线性向量进行异或操作后都得到零向量,则原集合是封闭的;否则,原集合不是封闭的。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [线性模板](https://blog.csdn.net/weixin_43519854/article/details/96977900)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [【矩阵论】线性空间与线性变换(3)(4)](https://blog.csdn.net/kodoshinichi/article/details/108916238)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值