Welcome

# Unit 1-Lecture 7：Binary Relation & Function

### 1 Binary Relation

#### 1.1 Definition

A binary relation, R, consists of a set, A, called the domain of R, a set, B, called the codomain of R, and a subset of A×B$A \times B$ called the graph of R.

#### 1.2 Relation Diagram

A binary relation, R, is:

• a function when it has the <=1 arrow out property.
• surjective when it has the >=1 arrows in property. That is, every point in the righthand, codomain column has at least one arrow pointing to it.
• total when it has the >=1 arrows out property.
• injective when it has the <=1 arrow in property.
• bijective when it has both the =1 arrow out and the =1 arrow in property

#### 1.3 Relation Images

• The image of a set, Y , under a relation, R, written R(Y), is the set of elements of the codomain, B, of R that are related to some element in Y.
• The inverse, R1$R^{-1}$ of a relation R : AB$A \to B$ is the relation from B to A defined by the rule
bR1aIFFaRb:
• The image of a set under relation, R1$R^{-1}$, is called the inverse image of the set.

### 2 Function

#### 2.1 Definition:

A function assigns an element of one set, called the domain, to an element of another set, called the codomain.

• Functions may be partial functions, meaning that there may be domain elements for which the function is not defined.
• If a function is defined on every element of its domain, it is called a total function.
• range(f) := f(domain(f))

(gf)(x)=g(f(x))

### 3 Finite Cardinality

• If A is a finite set, the cardinality of A, written |A|, is the number of elements in A.
• Let A, B be (not necessarily finite) sets. Then:
• A surj B iff there is a surjective function from A to B.
• A inj B iff there is an injective total relation from A to B.
• A bij B iff there is a bijection from A to B.
• Mapping Rules:
• |A| >= |B| iff A surj B
• |A| <= |B| iff A inj B
• |A| <= |B| iff A bij B

01-07 7577

06-17 3864

01-07 203

01-08 287

12-19 137

12-27 241

12-21 120

01-01 130

10-13 84

08-20 3450