Unit 1-Lecture 7:Binary Relation & Function

1 Binary Relation

1.1 Definition

A binary relation, R, consists of a set, A, called the domain of R, a set, B, called the codomain of R, and a subset of A×B called the graph of R.

1.2 Relation Diagram

A binary relation, R, is:

  • a function when it has the <=1 arrow out property.
  • surjective when it has the >=1 arrows in property. That is, every point in the righthand, codomain column has at least one arrow pointing to it.
  • total when it has the >=1 arrows out property.
  • injective when it has the <=1 arrow in property.
  • bijective when it has both the =1 arrow out and the =1 arrow in property

1.3 Relation Images

  • The image of a set, Y , under a relation, R, written R(Y), is the set of elements of the codomain, B, of R that are related to some element in Y.
  • The inverse, R1 of a relation R : AB is the relation from B to A defined by the rule
  • The image of a set under relation, R1, is called the inverse image of the set.

2 Function

2.1 Definition:

A function assigns an element of one set, called the domain, to an element of another set, called the codomain.

  • Functions may be partial functions, meaning that there may be domain elements for which the function is not defined.
  • If a function is defined on every element of its domain, it is called a total function.
  • range(f) := f(domain(f))

2.2 Function Compostion


3 Finite Cardinality

  • If A is a finite set, the cardinality of A, written |A|, is the number of elements in A.
  • Let A, B be (not necessarily finite) sets. Then:
    • A surj B iff there is a surjective function from A to B.
    • A inj B iff there is an injective total relation from A to B.
    • A bij B iff there is a bijection from A to B.
  • Mapping Rules:
    • |A| >= |B| iff A surj B
    • |A| <= |B| iff A inj B
    • |A| <= |B| iff A bij B
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/jitianyu123/article/details/53997688
个人分类: 离散数学
上一篇Unit 1-Lecture 6:Sets and Sequence
想对作者说点什么? 我来说一句