如何高效、优雅地进行高频策略回测?

本文介绍了如何构建一个秒级别的高频策略回测框架,包括数据处理、策略逻辑、交易清算和绩效报告四个模块。在大数据量下,重点强调了避免循环以提高效率,如使用rolling函数计算滚动平均。策略逻辑中,以MA5和MA20的交叉作为买卖信号。交易清算部分详细阐述了买入和卖出交易的盈亏计算,包括手续费的处理。最后,通过绩效报告展示了策略的亏损情况,强调了一个高效严谨的回测系统对于策略研发的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

数据处理

策略逻辑

 交易清算

绩效报告

回测性能


今天与大家探讨高频策略的回测框架。高频策略的研发,有两个显著的特点:

一是数据量大,与日频相比,分钟频率就是百倍的数据量, 到秒级别更达到上千倍的差异。

二是对交易细节敏感,回测系统要尽可能去模拟真实交易的情形,甚至要比真实交易更严格,这样研发出来的高频策略才有实盘的价值。所以高频策略要考虑的细节很多,决策时间点,成交价,手续费,流动性等。细节考虑的不到位,策略回测和实盘交易就会差异很大,降低策略研发的价值和效率。

如何在大数据量前提下,尽可能的将细节考虑到位,就是高频策略回测系统的挑战,也就是严谨和高效的权衡。

下面和大家一起构建一个秒级别的策略回测框架。

一般来说,回测框架会包含以下几个模块:

数据处理, 策略逻辑,交易清算,绩效报告

数据处理

数据模块是最基础和重要的环节,直接决定了回测框架的结构和效率,我们展开来看。

1) 加载原始数据

这里我们从parquet文件中加载原始的tick数据。

2) 将tick数据转换成10s级别的K线数据。

tick数据的结构以及通过resample转换成K线数据我们在上篇文章《》已经介绍过了,这里增加2个字段:

把10s内的买卖委托价格的均值作为该K线的买卖委托价,这个价格我们用来做成交价格的模拟

3)准备策略决策数据

     策略决策有可能用的K线已有的字段,也有可能需要基于已有字段衍生新字段。本例中我们基于Close衍生MA5和MA20两个字段

 对于高频数据处理,我们一定要尽可能地避免使用循环,用循环的地方多了,效率就很难提起来。我们使用rolling函数实现滚动计算指定长度的均值,这个内置的滚动机制要比

参考资源链接:[基于机器学习的高频CTA策略研究:模型构建与策略](https://wenku.csdn.net/doc/4ej0nwiyra?utm_source=wenku_answer2doc_content) 高频CTA策略在量化投资领域中至关重要,特别是在期货市场中,高频交易能够利用限价指令簿数据捕捉短期价格动量。要构建这样的策略,首先需要深入理解限价指令簿的运作原理,以及如何通过微观数据发现潜在的交易信号。XGBoost模型作为一个强大的机器学习工具,因其在处理大规模数据集时的高效率和准确性,已经成为构建高频CTA策略的首选模型之一。 构建策略的第一步是数据收集。从电子交易系统中获取限价指令簿的实时数据,包括买卖报价、成交量等。然后,进行数据预处理,包括数据清洗、异常值处理以及数据转换。接下来是特征工程,这一步骤至关重要,需要根据限价指令簿的数据结构,构造出能够反映价格动量的特征指标,例如基于价差交叉动量和基于中间价动量的方法构建价格标签。 特征筛选是提高模型性能的关键步骤,通过各种特征选择算法,如递归特征消除(RFE)或基于模型的特征选择,来确定最有影响力的因素。之后,对数据进行重采样处理,以解决类别不平衡问题。在数据准备充分后,利用XGBoost模型进行训练。这个过程包括确定最佳的超参数,使用交叉验证来避免过拟合,以及评估模型的预能力。 模型训练完成后,进行策略是必不可少的环节。在历史数据上应用训练好的模型,模拟实际交易环境,评估策略在不同市场条件下的表现。应该考虑交易成本、滑点和资金管理等因素。通过比较策略在不同时间段内的收益、最大撤和夏普比率等性能指标,来评价策略的有效性。 最后,为了验证策略的实际效果,可以将模型在历史数据上的表现与在实时或盘后数据上的表现进行对比。此外,进行未来性能的预也很重要,这有助于预策略在未来的潜在表现。在《基于机器学习的高频CTA策略研究:模型构建与策略》一书中,作者详细介绍了如何应用机器学习构建高频CTA策略,并提供了具体的实践案例和策略方法,是深入学习本领域知识的重要资源。 参考资源链接:[基于机器学习的高频CTA策略研究:模型构建与策略](https://wenku.csdn.net/doc/4ej0nwiyra?utm_source=wenku_answer2doc_content)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值