数据分析
文章平均质量分 71
九道门商业数据分析
这个作者很懒,什么都没留下…
展开
-
数据分析师是如何被淘汰的?
一个人开始变废的标志是什么?终日无所事事,没有目标,做什么都没动力没激情,凡事最多只求完成,不求完美。那…一个数据分析师又是如何快速地废掉的?(不要对号入座)闲得摸鱼闲有两种,一种是刚入行,领导安排什么就做什么,也不主动去学习,日子久了就习惯划水摸鱼了,最后的最后都失业了。另一种是掌握了基本的数据分析,业绩也还不错,就此进入了舒适圈,也就是开启混日子状态了,最后也很快废掉了。“现在的数据分析能力还不错,业绩也OK,每天上班就看看数据,发发报表,做做优化,然后就可以「喝茶看报,群里聊天、逛淘宝」过一天,每原创 2021-04-15 16:12:34 · 306 阅读 · 0 评论 -
九道门丨35岁的数据分析师还有公司要吗?
不是贩卖焦虑,90后已经快到这个年纪,90年的现在已经31岁了对自己的未来有规划吗?35岁前能攒多少钱?35岁做到管理层了吗?假如到了35岁公司裁员,你能找到新工作吗?这是一个非常严肃的问题!35岁,国家公务员规定的报考年龄顶线,过了这个年龄连公务员都不能报考了,就算你想压线报考,复习要几个月吧?而且确保一次就能考进去?面试时跟你一起的都是20多岁的年轻人,你有信心吗?35岁非公务员的人很多,有刚坐上管理岗位的,有还在做执行岗的,都一直在上班,没什么毛病。但是35岁执行岗还跳槽到什么大厂公司的原创 2021-04-13 18:29:12 · 331 阅读 · 0 评论 -
九道门丨五个Python数据分析工具,你值得拥有
众所周知,Python作为2021最火的语言,下面这几个工具你一定要学会!GraphLabGreateGraphLabGreate是一个Python库,由C++引擎支持,可以快速构建大型高性能数据产品。可以在计算机上以交互的速度分析以T为计量单位的数据量。在单一平台上可以分析表格数据、曲线、文字、图像。最新的机器学习算法包括深度学习,进化树和factorizationmachines理论。可以用HadoopYarn或者EC2聚类在你的笔记本或者分布系统上运行同样的代码。GraphLabGreate还要原创 2021-04-09 16:29:18 · 288 阅读 · 0 评论 -
九道门丨数据分析在媒体行业的应用
如今,借助大数据分析功能(例如实时流媒体,按次付费)以及更多服务,我们可以随时随地访问喜爱的节目和电影。现在,我们触手可及的所有内容,而大数据已成为这一惊人转变的支柱。今天我们看一下大数据在媒体和娱乐行业中的应用,都有哪些?1.照顾客户对于媒体和娱乐公司而言,对他们来说,没有人比用户更重要,让用户满意是他们最艰巨的任务。公司需要确保满足客户的每个愿望。为了达到相同的目的,他们必须意识到客户的需求。为了确保轻松访问其内容,媒体和娱乐公司收集了大量用户数据,以获取有关用户选择和兴趣的见解。最好的部分是使用原创 2021-04-07 17:12:35 · 209 阅读 · 0 评论 -
九道门丨灵魂拷问:我该继续做数据分析师吗?
灵魂拷问:我该继续做数据分析师吗?做到什么程度才算一名合格的数据分析师?成为一名合格甚至是大佬级的数据分析师应该具备哪些能力和条件?每一个想成为数据分析师或者已经是数据分析师的人,可能都想过这几个问题。每个人都有自己心中的答案,或许每个都对,也可能都不对。比如所在领域、经验、职位、技能、人际关系等等,这些又跟一个词联系起来,就是“认知”,“认知”来自哪里,来自学习对吗?提到学习,我们可能想到的是什么呢?经验?技能?天赋?思维?几乎每过几天,阿九就在九道门数据分析群里看到类似这样的问题,多数来自原创 2021-04-02 16:04:20 · 106 阅读 · 0 评论 -
九道门丨干货分享,企业需要什么样的数据分析师?
首先,这个问题凡是直接回答“能帮企业赚钱/省钱”的,都会大概率阵亡。因为数据本质上就是个参谋,不是真正在一线战斗的士兵。想赢得一线战斗的胜利,需要的是经费、技术人员、业务团队和老板的审批权。毕竟数据就是数据,数据能帮助业务但不能替代业务。数据的作用是排在队尾的。九道门丨干货分享,企业需要什么样的数据分析师?当然,也有些同学变身激情澎湃,大吹一通:“身为一个数据分析师,我的能力真的好强。不需要投经费,不需要做开发,只要拿着我的分析,钞票就花花的来!”这么浮夸的说法肯定会被懂行的人直接拆穿。但万一遇到的原创 2021-03-30 16:05:36 · 102 阅读 · 0 评论 -
如果你有这七个迹象,意味着你应该转行大数据了!
时代已经改变,以前生成的数据量不是很高,现在情况完全不同了,今天生成的数据以PB为单位,不可能一次又一次地存档数据。大数据技术和工具的不断壮大巨大的,它是扩大和日益发展的一天,是时候将你的职业转变为大数据了。以下是7个最重要的原因或标志,可以告诉你现在是时候转变职业并开始学习大数据了。1.在你的经验,技能和知识方面,世界正在升级,但你除外:在IT部门领域中,有大量的机会在增长,大数据排在其首位。如果你不学习新事物并提高知识水平,那么你将被远远甩在后面。你还缺乏在竞争市场中维持竞争所必需的技能。由于某些原创 2021-03-29 14:02:46 · 87 阅读 · 0 评论 -
数据分析必学的四大步骤!
当刚涉足数据分析领域的分析师被问及,数据分析人员最重要的能力是什么时,他们给出了五花八门的答案,有说要熟练操作工具的,有说要有前沿思想的等等。其实我想告诉他们的是,使用一些合理的步骤,来让企业更好的理解数据分析,是十分有必要的。今天来告诉大家一个简单的步骤:怎么了?——为什么?——然后呢?——怎么解决?描述型分析:怎么了?描述性分析是最常见的分析方法,就是发生了什么事情,有什么样的数据产生等。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。例如,企业每月的营收和损失账单等等。我们数原创 2021-03-26 15:45:15 · 565 阅读 · 0 评论 -
大公司如何使用大数据——5个数据案例研究!
键盘动图引导关注毫无疑问,大数据已成为大多数现代行业的大变革者。随着大数据继续贯穿我们的日常生活,采用大数据的不同公司的数量持续增加。让我们看看通过这5个大数据案例研究,大数据如何帮助他们在市场上取得成倍的表现。1.大数据案例研究–沃尔玛沃尔玛是全球最大的零售商,也是全球收入最大的公司,在28个国家/地区拥有超过200万名员工和2万家商店。在“大数据”一词出现之前,它就开始利用大数据分析。沃尔玛使用数据挖掘来发现可用于向用户提供产品推荐的模式,该模式基于将哪些产品组合在一起。沃尔玛通过应用有效的数据原创 2021-03-25 15:03:36 · 965 阅读 · 0 评论 -
大数据如何改变教育领域?
随着信息量的增长,许多国家的教育系统无法正确处理和分析信息。结果,教育水平也受到影响。学生通常无法应付分配的任务量,无法在线购买大学论文,或者在考试中作弊。同时,教师和教授没有时间和机会手动检查数据流。实际上,教育系统始终会生成大数据。唯一的问题是如何在系统级别开始使用这些数据:分析信息并根据接收到的数据做出决策。在教育领域中,有五种主要的数据类型:个人资料有关学生与电子学习系统(电子教科书,在线课程)互动的数据有关学习材料有效性的数据管理(系统范围)数据投影数据以下是大数据在教育领域的优势原创 2021-03-24 13:41:02 · 166 阅读 · 0 评论 -
干货分享丨数据分析学不好? 选对编程语言真的很重要…
RedMonk发布2021编程语言排名,Python突然发力,力压Java一举成为全球第二火的语言仅次于JavaScript。对比其他语言,Python的优势在哪里?反超Java, Python成2021最火语言其实现在学Python不是新鲜事,甚至不少人会把Python当作第一语言来学习。也难怪,Python的优点太多了,它语言简洁、开发效率高、可移植性强,并且可以和其他编程语言轻松无缝衔接。而且,学好Python,之后做Python程序员爬虫,往数据分析、数据挖掘、人工智能、深度学习等多个方向都可以顺原创 2021-03-23 13:50:16 · 146 阅读 · 0 评论 -
数据分析师必须知道的十大算法(二)
上一篇我们介绍了数据分析师必须知道的十大算法的其中5种,那么今天我们就接着来了解剩下的5种算法:6.支持向量机(SVM)支持向量机或支持向量机属于监督型机器学习算法的类别,可在分类和回归问题中找到应用。它最常用于问题分类,并通过使用超平面对数据点进行分类。数据分析算法的第一步涉及将所有数据项绘制为n维图形中的单个点。在此,n是特征的数量,每个单个特征的值是特定坐标的值。然后,我们找到了最能区分这两个类别以对其进行分类的超平面。找到正确的超平面在分类中起着最重要的作用。最接近分离超平面的数据点原创 2021-03-22 13:55:36 · 852 阅读 · 0 评论 -
九道门丨数据分析师必须知道的十大算法(一)
数据分析师们在解决任何问题时都需要一套技能,在进行数据分析时,我们必须了解用于解决不同类型问题的各种机器学习算法,因为某一种算法可能并不是适用于所有类型问题,我们需要找到一个最合适的。这些算法可从我们正在使用数据集中找到各种不同的应用,例如预测,分类,聚类等。顶级数据分析算法1.线性回归线性回归方法用于通过使用自变量的值来预测因变量的值,线性回归模型适用于预测连续量的值,线性回归模型以方程式给出的直线表示数据集的输入变量(x)和输出变量(y)之间的关系如:y = b0 + b1x在这个式子中,y是我们要原创 2021-03-19 13:50:48 · 416 阅读 · 0 评论 -
九道门丨从国外具体案例讲数据分析
有人说数据分析行业太过错综复杂,外行人看不懂,内行人还懵懂。那我们今天就从具体的案例出发,来看看数据分析里面的条条道道。一、Spotify音乐在几乎所有年龄段的人们的生活中都起着重要作用,我们经常在旅行、休闲时间等日常活动中聆听自己喜欢的歌曲,以释放压力并放松身心。如今,市场上有许多音乐播放应用程序。大家可能不少听说过“ Spotify”这个名称,而且很可能使用过它。Spotify是一个正版流媒体音乐服务平台,2008年10月在瑞典首都斯德哥尔摩正式上线。Spotify提供免费和付费两种服务,免费用原创 2021-03-17 15:05:16 · 195 阅读 · 0 评论 -
干货必备,医疗保健行业中的6种数据分析
数据分析目前已成为几乎每个行业不可或缺的一部分,医疗保健是将医疗服务提高到全新水平的行业之一。我们一定在想如何?通过在医疗保健行业实施数据分析。如今,医生正在使用各种可产生大量健康数据的先进医疗设备。在美国,每年产生约12亿份临床文件。其中近80%的数据是非结构化的,形式是医生写的便笺,图像和其他一些文件。因此,处理如此大量的数据正成为医生和科学家的一项艰巨的任务。在这里,数据分析为医疗保健行业提供了大量的机会,使它们可以以最有效的方式收集,组织和分析这些数据。医疗保健中的数据分析数据分析数据分析原创 2021-03-16 15:15:55 · 1146 阅读 · 0 评论 -
企业可以通过哪些途径来收集数据?90%的都用错了!
随着信息化发展,互联网已然普及,全球数据正在呈现出爆发式的增长局面,同时也显露出大数据海量集聚的特点。在过去几年里,大数据已经对人类社会多个方面产生了深远的影响,如:技术、应用、政策、产业等多个层面。尤其可以得出结论,利用大数据实现产业增值将是大势所趋,那么,在如此开放的社会中,如何收集企业所需的数据呢?数据分析大数据可以大致分为三类:传统企业数据、机器和传感器数据以及社交数据。传统企业数据包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。机器和传感器数据包括呼叫记录原创 2021-03-13 13:45:28 · 971 阅读 · 0 评论 -
Python和R在数据分析方面的主要区别
Python和R都具有广阔的软件生态系统和社区,因此这两种语言都几乎适合于任何数据分析任务。也就是说,在某些领域中,一个领域比另一个领域更强大。Python的用武之地数据分析大多数的深度学习研究都是使用Python完成的,因此Keras和PyTorch之类的工具具有“ Python优先”的开发工具。我们可以在之后的深度学习中了解这些内容。Python在R之上具有优势的另一个领域是将模型部署到其他软件中。Python是一种通用的编程语言,因此,如果我们使用Python编写应用程序,则包含基于Python原创 2021-03-11 11:02:11 · 299 阅读 · 1 评论 -
数据分析师使用统计数据的7种方式
数据分析1.设计和解释实验以指导产品决策 观察:广告变体A的点击率比变体B高5%。 数据分析师可以帮助确定这种差异是否足够显着,以致需要引起更多的关注,关注和投资。 它们可以帮助我们了解实验结果,这在我们测量多个指标,运行相互影响的实验或结果中发生某些Simpson悖论时特别有用。 假设我们是一家全国性的零售商,并且我们正在尝试测试新的营销活动的效果。数据分析师可以帮助我们确定应分配给实验组的存储,以在实验组和对照组之间取得良好的平衡,应分配给实验组的样本量以获得清晰的结果,以及如何进行.原创 2021-03-10 11:59:37 · 188 阅读 · 0 评论 -
细说数据分析的类型、方法和技术
数据分析是收集,检查,清理,转换和建模数据的过程,以发现有用的信息并为业务决策提供有用的结论。使用分析或统计工具评估数据以发现有用信息的人被称为数据分析师。以可视形式呈现数据的过程称为“数据可视化”,主要目的是从原始数据中提取有用的信息,然后根据所分析数据的事实做出决策。为什么要进行数据分析? 数据驱动的企业不断根据数据和事实制定决策,这样,由于拥有可用的数据来支持他们,因此他们可以更有信心采取行动。 由于许多个人,企业都依赖于数据和事实,因此需要通过研究来制定更具战略意义的决策,以帮助其企.原创 2021-03-09 16:44:48 · 415 阅读 · 0 评论 -
跨行业的数字化转型
数据分析 在21世纪,技术使我们的工作场所,家庭,每个行业以及我们生活的各个方面发生了显着变化。如今,几乎每个公司都可以说是科技公司,技术进步比以往任何时候都更快。这就是为什么企业采用数字化转型的原因。数字化转型被定义为——与数字技术在人类社会各个方面的应用相关的变化,即技术的大规模采用。数字化转型不是流行语,它是所有企业所有者和管理者的必备和优先事项。数据分析为什么数字化转型至关重要? 超过50亿人正在使用无线互联网,35亿部智能手机将近占世界人口的近一半,他们每天花费至少3个小时使用它们。客户原创 2021-03-06 22:36:33 · 235 阅读 · 0 评论 -
与统计报表人员相比,为什么如今数据分析师更吃香?
目前,工作中使用Python的人很多,然而数据分析领域的专业人才却很少。事实上,数据无处不在,不仅编程人员和相关技术部门使用数据,每个组织和行业都在使用和存储数据。数据涉及各个方面,存储了大量数据,这都需要专业的数据分析人员来进行分析。大数据分析需求巨大的10个原因:对分析专业人员的需求: 埃森哲高级管理人员说:“一个人没有技巧就无法分析数据。”经过疫情的考验,大数据管理和分析方面的工作机会比往年增加很多,许多IT专业人员纷纷准备为数据分析培训投入时间和金钱。 这是大数据分析的工作趋势图技能原创 2021-03-05 16:27:12 · 164 阅读 · 0 评论 -
说一说数据分析师和数据科学家的关系
说一说数据分析师和数据科学家的关系 随着数字化的节奏越来越快,越来越多的企业开始认识到数据分析的重要性,其中就有许多企业需要依靠数据来制定相关的业务决策。这导致市场对数据分析专业人员(如数据分析师和数据科学家)的需求呈指数级增长。 我们今天先探讨数据分析师和数据科学家之间的差异以及他们的不同工作职责。我们还将讨论我们在职业生涯中需要出色的技能和资格。数据分析师和数据科学家之间的区别:数据分析师 数据分析师熟悉分析工具和技术,他们利用历史数据来识别趋势,并提出可行的见解以支持业务决策。 除原创 2021-03-04 23:54:56 · 281 阅读 · 1 评论 -
数据分析师学习机器模型的方法
数据分析师通过对海量数据进行提取、清洗、分析最后产生可行性建议,那么数据以及数据特征就是重要的“材料”,而分析过程中采用的模型和算法则是“手法”。没有足够的数据和适合的特征,即使模型结构再强大也是无济于事的。为了能够更好的使用模型,我们需要在这里做出两个区分。 首先,我们需要区分数据分析学习机器模型的类型,训练机器学习模型的方法有两种: **离线学习:**对模型进行一次历史数据训练。将模型部署到生产环境后,它仍然保持不变,尽管如果模型变得不稳定(通常会发生这种情况),则可以对其进行重新训练。原创 2021-03-02 09:50:21 · 157 阅读 · 0 评论 -
探索数据分析行业的日常工作
最近 “数据分析师”这个职位非常得火热,使用数据和技术的工作方式也激起了很多人的好奇心,那么一个数据分析师整天都在做什么呢? 想象是一回事,每天做这些工作又是另一回事。我们深入挖掘了数据分析师一整天都在做什么。继续往下看,你会发现这些日常的工作职责可能都是我们未来职业生涯的一部分。数据分析师生活中的一天 一般来说,数据分析师将检索和收集数据,组织数据并使用它来得出有意义的结论。数据分析师的工作取决于他们处理的数据类型(销售、社交媒体、库存等)以及具体的客户项目。 几乎每个行业的公司都能从数据分原创 2021-03-01 22:00:25 · 114 阅读 · 0 评论 -
为什么数据可视化很重要?
什么是数据可视化? 如今商业世界通过数据分析收集了很多的信息,因此我们必须有一种方法来绘制这些数据的图片,以便我们能够解释他们的含义。数据可视化通过地图或图表的可视化信息,使我们对信息的含义有了清晰的认识。这会让人理解数据,更容易识别大型数据集中的趋势,模式和异常值。为什么数据可视化很重要? 无论您选择的是什么行业或职业,数据可视化都可以通过以最有效的方式传递数据来提供帮助。数据可视化是业务智能流程中的重要步骤之一,它可以对原始数据进行建模,并交付数据,以便得出结论。 具体而言,数据可视化使用原创 2021-02-27 13:38:20 · 490 阅读 · 0 评论 -
Python被称作“数据分析之王”的原因
对于数据分析人员来说,为什么要学习Python已经是老生常谈了,但是鉴于很多小伙伴还是不太清楚,那我们今天再来好好讲一讲~ 为什么Python是数据分析之王 Python已经成为应用机器学习中的黄金标准。当前,对于了解Python的数据分析师和机器学习工程师而言,职位空缺要多于所有其他语言的总和。此时的逻辑问题可能是,为什么在应用机器学习中如此频繁地使用Python?尽管有很多原因使它在这个领域无处不在,但通常有三个原因是最重要的。Python广泛采用的主要原因之一是它的简单性。尽管这不是一个硬性原创 2021-02-26 18:17:02 · 196 阅读 · 0 评论 -
数据分析师需要学习SQL的哪方面知识呢
作为数据分析师,你首先需要从正在查询的数据库中读取数据。我们一般会采用这种方法: 了解SELECT语句的工作方式。这其中包括研究逻辑查询处理的工作方式。逻辑查询处理描述了数据库引擎执行SELECT语句的子句的顺序。了解它会引导你编写更好,更准确的查询。研究联接的工作方式 内部联接是最有效的。左,右和完全外部联接的效率较低,但有时必须使用它们。内部联接可以导致行被过滤掉,外部联接不能导致过滤。研究加入,因此你知道何时使用每种类型。只有最简单的数据库查询才不涉及联接。了解如何使用GROUP BY子句原创 2021-02-26 09:28:03 · 258 阅读 · 0 评论 -
数据分析师兴起并繁荣背后的原因
过去20年的技术热潮所产生的信息多于企业不知道如何处理的信息,他们需要人们分析数据并将其用于做出可靠的业务决策。数据分析 当我们进入2020年代时,世界经济论坛将数据分析师列为所有行业中最受欢迎的工作类别之一。本文研究: 数据分析技能需求增加的原因 数据分析专业人员的职业道路 数据分析如何帮助您在医疗保健管理,供应链管理,专业体育管理,制造和市场营销等其他领域脱颖而出。 为什么对数据分析专业人员和技能的需求增加? 企业生成,存储,销售和共享的数据量比以往任何时候都要大。客户需求驱动原创 2021-02-24 16:24:00 · 451 阅读 · 0 评论 -
数据分析项目对于简历的重要性
数据分析的飞速发展开辟了新的机遇。因此,人们正涌向数据分析领域。数据分析工作的薪水很高,因此精通需求技术的专业人员将受到高度重视。 话虽如此,制作出出色的简历也是其中重要的一环,以便我们能在面试中脱颖而出。如果你没有任何项目工作经验,那么作为候选人的简历的价值要小得多。项目研究表明,候选人可以实际应用他们从各种资源、经历中掌握的经验。 让我们看一下许多成功的数据分析师做过的具有代表性的数据分析项目。有价值的数据分析项目经验可以帮助丰富我们的简历。 1. Chatbot项目 Chatbot是一原创 2021-02-23 14:50:02 · 243 阅读 · 0 评论 -
什么是数据清理,为什么它很重要?
随着数字化进程越来越快,许多小型企业都在使用一些Excel电子表格来跟踪数据分析师在清洗数据时的操作,但是,随着这些公司的不断发展,他们无法再使用这种简单的方法跟上速度。在某一时刻,数据开始大量涌入,单页电子表格转换为数据库,随后又扩展为数据仓库。此时如果没有在数据分析上进行适当的投资,这些公司将永远无法释放这些数据的潜力,以加速其增长并提高其运营效率,例如,开发更好的产品或提供更好的服务。数据分析师 想要在市场上取胜的企业需要知道在哪里可以找到所需的数据以及它们如何联系在一起。但是在开始分析数据之前,原创 2021-02-22 10:20:59 · 1159 阅读 · 0 评论 -
知多少:数据分析师和数据科学家的区别
数据科学家和数据分析师都被认为是大数据领域专业人士,但是他们各自具有不同的技能,资格和工作职责。数据分析师寻求识别数据趋势以及如何根据这些见解做出业务决策,而数据科学家更擅长数据解释,他们钻研创新技术来分析数据以寻找商机。可以说,数据科学家是作为数据分析师进阶路径中的金字塔部分。数据分析师的职责1.确定业务需求数据分析师研究并确定企业的信息需求,他们还将确定分析所需的数据和数据源。2.准备和分析数据这项工作涉及从主要和次要来源收集相关和更新的数据,数据分析师将使用数据来识别趋势和模式。通过收集原创 2021-02-20 15:54:18 · 245 阅读 · 0 评论 -
想学数据分析?强推Python,学他!
如果我们对数据分析感兴趣,那么Python是一定要掌握的一门语言,它不仅是大多数数据分析的最佳语言,而且还是学习编程的最佳第一语言,它对于基础结构编程也很有用。作为已经在数据分析和分析领域工作了将近2年的“新人”,并且相信我,如果我们想从事数据分析的职业生涯,Python无疑是最好的学习语言。当然,还有其他语言,但是由于一些原因,我更喜欢使用Python。现在,让我们来说一说为什么我强烈推荐Python作为数据分析的“语言”。有5个原因促使我向数据分析爱好者和专业人员强烈推荐Python。点击添加图片原创 2021-02-19 17:41:25 · 83 阅读 · 0 评论 -
怎么给数据分析师下定义?
数据分析师是具有一定的编码和统计技能的人员,他们致力于以采取各种方式从数据中获取价值。在数据分析领域,主要分为两种类型: **分析类数据分析师:**这类人员主要专于分析。这个方向主要与理解数据或以相当静态的方式进行数据处理有关。这个方向部分数据分析师与统计学家有相似部分,知道处理非实际数据的所有实际细节,包括统计课程中讲授的内容——数据清理,处理非常大的数据集的方法,可视化,对特定领域的深入了解,很好地编写数据等。 工程类数据分析师可以很好地编码以处理数据,但不一定是在分析领域也是专家。分析类数据分原创 2021-02-15 21:45:22 · 100 阅读 · 0 评论 -
数据分析对于统计学的需求
统计和数据分析是两个密切相关的领域。两者之间的界线有时会非常模糊。然而,有些方法显然属于统计领域,不仅在机器学习项目中有用,而且在其他领域中也非常有价值。可以说,通过机器学习预测建模项目可以有效地选择工作需要的统计方法。了解问题预测模型中最具影响力的环节也许就是了解问题。这是问题类型的选择,例如回归或分类,也许是问题的输入和输出的结构和类型。了解问题一开始可能有点难度,数据分析对于这个领域的新手来说,可能需要对该领域内的预测内容进行重大探索。可以在搭建问题框架时期协助探索的统计方法包括数据探索,还可以原创 2021-02-13 23:25:06 · 190 阅读 · 0 评论 -
数据分析方法和数据分析类型
数据对于各种企业都变得越来越重要。近年来,各公司收集的数据量有所增加。随着数据量的快速增长,数据分析和数据分析方法对于分析师而言变得越来越重要。数据中的模式可以指导分析师获得重要见解,以制定关键业务决策。 数据分析方法的类型 数据分析方法有很多类型,以下是最常用的几种类型: 数据挖掘:该技术涉及使用工具提取数据并检查其关键模式和洞察力,它接受数字并将其转换为信息。 统计分析:该技术检查样本以查找诸如中位数和偏差之类的信息,这些信息可以帮助分析人员找到相关模式。 诊断分析:该技术通过识别数原创 2021-02-12 21:41:32 · 385 阅读 · 0 评论 -
企业面临的7大数据分析挑战
大数据 在这个数字化的世界中,我们每分钟都会产生大量数据。每分钟产生的数据量之大使其难以存储管理、利用和分析。导致大型企业也在努力寻找合理利用这些数据的方法。 今天,大型企业产生的数据量正以每年40%到60%的速度增长,如上所述。简单地存储数据将无济于事,这就是企业选择数据分析工具之类的原因,这个选择可以在很大程度上帮助他们处理数据。现在,让我们看一下企业在数据分析中面临的一些挑战:1.跨不同数据源的同步需求 随着数据集变得越来越大和越来越多样化,将它们整合到分析平台中将是一个巨大的挑战。如果原创 2021-02-09 22:15:01 · 208 阅读 · 0 评论