数据分析是收集,检查,清理,转换和建模数据的过程,以发现有用的信息并为业务决策提供有用的结论。使用分析或统计工具评估数据以发现有用信息的人被称为数据分析师。以可视形式呈现数据的过程称为“数据可视化”,主要目的是从原始数据中提取有用的信息,然后根据所分析数据的事实做出决策。
为什么要进行数据分析?
数据驱动的企业不断根据数据和事实制定决策,这样,由于拥有可用的数据来支持他们,因此他们可以更有信心采取行动。
由于许多个人,企业都依赖于数据和事实,因此需要通过研究来制定更具战略意义的决策,以帮助其企业更有效地运作,从而避免犯下可以避免的错误,因此需要数据分析师进行数据分析以帮助分析数据,收集所有有用信息并提供做出正确决策所需的所有必要详细信息。
如今,小型企业,离线和在线零售公司,医学界甚至体育界都使用数据分析。
方法与技巧
尽管用于数据分析的方法多种多样,包括数据挖掘,文本分析,商业智能,组合数据集和数据可视化,但它们都基于两个主要类别:定性和定量分析。
定性分析
定性分析是一种数据分析方法,主要回答寻求的问题。诸如为什么,什么或如何等问题通常通过定量技术来解决
细说数据分析的类型、方法和技术
最新推荐文章于 2024-05-02 12:04:51 发布
数据分析涉及收集、检查、清理和建模数据,以发现有用信息并支持业务决策。数据驱动的决策能增强信心,减少错误。数据分析分为定性与定量分析,常见类型包括文本分析、统计分析(描述性和推理性)、诊断分析、预测分析和规范分析。各类型在不同行业广泛应用,如文本分析用于数据挖掘,统计分析用于理解过去数据,诊断分析找出问题原因,预测分析进行未来预测,规范分析提出行动方案。数据分析师的角色在各行各业中愈发重要。
摘要由CSDN通过智能技术生成