练习
3.1-1 设f(n)与g(n)都是渐进非负函数。利用Θ记号的基本定义来证明max(f(n), g(n)) =Θ(f(n) + g(n))。
证明: 若证明成立,则存在n>=n0,且c1>0,c2>0:
c1(f(n) + g(n)) <= max(f(n), g(n)) <= c2( f(n) + g(n) ) 成立
若max(f(n), g(n)) = f(n),g(n) < f(n),那么有
c1(f(n) + g(n)) <= f(n) <= c2( f(n) + g(n) ) ,转化一下
f(n) * (1 - c2) <= c2 * g(n) (1)
f(n) * (1 - c1) >= c1 * g(n) (2)
&nbs

本文详细解答了《算法导论》第三章关于函数增长的若干思考题,包括利用Θ记号证明max(f(n), g(n))与f(n) + g(n)的关系,以及对多项式增长率的讨论。同时也探讨了算法运行时间与O(n^2)的关系,2的幂次比较问题,并阐述了o(g(n))与ω(g(n))的性质。"
122837968,7691243,VirtualBox中CentOS7启动卡死解决:单用户模式修复,"['虚拟机', 'Linux', '运维', '服务器', '故障排除']
最低0.47元/天 解锁文章
5070

被折叠的 条评论
为什么被折叠?



