第三章 函数的增长 3.1 渐进记号

3.1-1 假设f(n)与g(n)都是渐进非负函数。使用θ记号的基本定义来证明max(f(n),g(n))=θ(f(n)+g(n))。

解: c1(f(n)+g(n))<max(f(n),g(n))<c2(f(n)+g(n))
c1=1/2,c2=2 时,恒成立。

3.1-2 证明:对任意实常量a和b,其中b>0,有

(n+a)b=θ(nb)

解: c1nb(n+a)bc2nb
c1(1+an)c2
c1=1,c2=2 时,恒成立。

3.1-3 解释为什么“算法A的运行时间至少是 O(n2) ”这一表述是无意义的。

O:表示一个函数的渐进上界。
既然是上界,用“至少来形容”,就不恰当了吧。

3.1-4 2n+1=O(2n)22n=O(2n)

O:表示一个函数的渐进上界。
1)证明, 2n+1=O(2n) 是否成立
2n+1c22n,c2=2 时成立
所以,成立。
2)证明, 22n=O(2n) 是否成立
22nc22n,c2 为正无穷
所以,不成立。

3.1-5 证明定理3.1

定理3.1:对于任意两个函数f(n)和g(n),我们有f(n)=θ(g(n)),当且仅当f(n)=O(g(n))且f(n)=Ω(g(n))

b<f<a,f<a,f>b

3.1-6 证明:一个算法的运行时间为θ(g(n))当且仅当其最坏情况运行时间为O(g(n)),且其最好情况运行时间为Ω(g(n))

同上

3.1-7 证明: o(g(n))w(g(n)) 为空集

因为这两个是紧确上界和下界。

3.1-8 可以扩展我们的记号到有两个参数n和m的情形,其中的n和m可以按不同速率独立地趋于无穷。对于给定的函数g(n,m),用O(g(n,m))来表示一下函数集:

O(g(n,m))={f(n,m):c,n0m0,使nn0mm0,0f(n,m)cg(n,m)}

定义如下:

Ω(g(n,m))={f(n,m):c,n0m0,使nn0mm0,0cg(n,m)f(n,m)}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值