数字和为sum的方法数(Python实现)

题目描述

给定一个有n个正整数的数组A和一个整数sum,求选择数组A中部分数字和为sum的方案数。
当两种选取方案有一个数字的下标不一样,我们就认为是不同的组成方案。

输入描述:

输入为两行:
 第一行为两个正整数n(1 ≤ n ≤ 1000),sum(1 ≤ sum ≤ 1000)
 第二行为n个正整数A[i](32位整数),以空格隔开。

输出描述:

输出所求的方案数

示例:

输入:

5 15

5 5 10 2 3

输出:

4

思路:

和问题拼凑面值问题相似,可以使用动态规划思路求解。

动态规划解决问题的基本思路是找出边界条件和递推关系。

这里,我们用数组s[i][j]表示前i个数字和为j的方案数,因为有一个数字不同时就实为不同方案,显然前3个数字和为j的应该在前2个数字和为j的方案数基础上再增加。

于是我们有递推关系

if j < A[i]: s[i+1][j] = s[i][j]

if j >= A[i]: s[i+1][j] = s[i+1][j] + s[i][j - A[i]]

关于S[i][j]初始化:

前0个数字和为0的方案数显然应该是1(即不取任何数),于是S[i][j]可初始化为

S=[[0]+[1]* i for i in range(n)]

代码

line = [int(v) for v in raw_input().split()]
n,T = line[0],line[1]
C = [int(c) for c in raw_input().split()]
 
S = [[1]+[0]*T for i in range(n+1)]
#print S
for i in range(n):
	for t in range(T+1):
		S[i+1][t] = S[i][t]
		if t-C[i] >= 0:
			S[i+1][t] += S[i][t-C[i]]
	# print i+1
	# print S[i]


print S[n][T]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值