题目描述
给定一个有n个正整数的数组A和一个整数sum,求选择数组A中部分数字和为sum的方案数。
当两种选取方案有一个数字的下标不一样,我们就认为是不同的组成方案。
输入描述:
输入为两行: 第一行为两个正整数n(1 ≤ n ≤ 1000),sum(1 ≤ sum ≤ 1000) 第二行为n个正整数A[i](32位整数),以空格隔开。
输出描述:
输出所求的方案数
示例:
输入:
5 15
5 5 10 2 3
输出:
4
思路:
和问题拼凑面值问题相似,可以使用动态规划思路求解。
动态规划解决问题的基本思路是找出边界条件和递推关系。
这里,我们用数组s[i][j]表示前i个数字和为j的方案数,因为有一个数字不同时就实为不同方案,显然前3个数字和为j的应该在前2个数字和为j的方案数基础上再增加。
于是我们有递推关系:
if j < A[i]: s[i+1][j] = s[i][j]
if j >= A[i]: s[i+1][j] = s[i+1][j] + s[i][j - A[i]]
关于S[i][j]初始化:
前0个数字和为0的方案数显然应该是1(即不取任何数),于是S[i][j]可初始化为
S=[[0]+[1]* i for i in range(n)]
代码:
line = [int(v) for v in raw_input().split()]
n,T = line[0],line[1]
C = [int(c) for c in raw_input().split()]
S = [[1]+[0]*T for i in range(n+1)]
#print S
for i in range(n):
for t in range(T+1):
S[i+1][t] = S[i][t]
if t-C[i] >= 0:
S[i+1][t] += S[i][t-C[i]]
# print i+1
# print S[i]
print S[n][T]