题目描述
Fibonacci数列是这样定义的:
F[0] = 0
F[1] = 1
for each i ≥ 2: F[i] = F[i-1] + F[i-2]
因此,Fibonacci数列就形如:0, 1, 1, 2, 3, 5, 8, 13, ...,在Fibonacci数列中的数我们称为Fibonacci数。给你一个N,你想让其变为一个Fibonacci数,每一步你可以把当前数字X变为X-1或者X+1,现在给你一个数N求最少需要多少步可以变为Fibonacci数。
输入描述:
输入为一个正整数N(1 ≤ N ≤ 1,000,000)
输出描述:
输出一个最小的步数变为Fibonacci数"
示例
输入:
15
输出:
2
我的代码:
num = int(raw_input())
a = [0,1]
i = 2
while a[i-1] + a[i-2] <= 1000000:
a.append(a[i-1] + a[i-2])
i += 1
# print a
if num in a:
print 0
else:
for i in range(len(a)):
if a[i] > num:
loca = i
break
print min(a[loca] - num,num - a[loca-1])
优化:
上面的代码对于每个示例都建立了最大的斐波那契数列,然而对于一些输入较小的示例,显然没有必要简历全部的数列。考虑最后输出结果时,只用到数目左右两边的斐波那契数,那么简历从0到n的斐波那契数列也是没有必要的。
num = int(raw_input())
an_1 = 1
an_2 = 0
while 1:
next = an_1 + an_2
if next >= num:
break
an_2 = an_1
an_1 = next
print min(next - num, num - an_1)