寻找斐波那契数

题目描述

Fibonacci数列是这样定义的:
F[0] = 0
F[1] = 1
for each i ≥ 2: F[i] = F[i-1] + F[i-2]
因此,Fibonacci数列就形如:0, 1, 1, 2, 3, 5, 8, 13, ...,在Fibonacci数列中的数我们称为Fibonacci数。给你一个N,你想让其变为一个Fibonacci数,每一步你可以把当前数字X变为X-1或者X+1,现在给你一个数N求最少需要多少步可以变为Fibonacci数。

输入描述:

输入为一个正整数N(1 ≤ N ≤ 1,000,000)

输出描述:

输出一个最小的步数变为Fibonacci数"

示例

输入:

15

输出:

2

我的代码:

num = int(raw_input())
a = [0,1]
i = 2
while a[i-1] + a[i-2] <= 1000000:
	a.append(a[i-1] + a[i-2])
	i += 1
# print a
if num in a:
	print 0
else:
	for i in range(len(a)):
		if a[i] > num:	
			loca = i
			break
	print min(a[loca] - num,num - a[loca-1])

优化:

上面的代码对于每个示例都建立了最大的斐波那契数列,然而对于一些输入较小的示例,显然没有必要简历全部的数列。考虑最后输出结果时,只用到数目左右两边的斐波那契数,那么简历从0到n的斐波那契数列也是没有必要的。

num = int(raw_input())
an_1 = 1
an_2 = 0
while 1:
	next = an_1 + an_2
	if next >= num:
		break
	an_2 = an_1
	an_1 = next
print min(next - num, num - an_1)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值