Remove all nodes which don’t lie in any path with sum>= k

Given a binary tree, a complete path is defined as a path from root to a leaf. The sum of all nodes on that path is defined as the sum of that path. Given a number K, you have to remove (prune the tree) all nodes which don’t lie in any path with sum>=k.

Note: A node can be part of multiple paths. So we have to delete it only in case when all paths from it have sum less than K.

给定一个二叉树,一条完整路径被定义为从根结点到叶子节点的一条路径。这条路径上的节点的和定义为这条路径的和。给定一个数K,去掉那些不在remove (prune the tree) all nodes which don’t lie in any path with sum>=k.

Consider the following Binary Tree
          1 
      /      \
     2        3
   /   \     /  \
  4     5   6    7
 / \    /       /
8   9  12      10
   / \           \
  13  14         11
      / 
     15 

For input k = 20, the tree should be changed to following
(Nodes with values 6 and 8 are deleted)
          1 
      /      \
     2        3
   /   \        \
  4     5        7
   \    /       /
    9  12      10
   / \           \
  13  14         11
      / 
     15 

For input k = 45, the tree should be changed to following.
      1 
    / 
   2   
  / 
 4  
  \   
   9    
    \   
     14 
     /
    15 

具体思路见: http://www.geeksforgeeks.org/remove-all-nodes-which-lie-on-a-path-having-sum-less-than-k/

代码1和代码2的区别在于,代码1的pruneUtil函数要返回根结点,代码2的pruneUtil函数不返回根结点。但是代码1有runtime error,代码2正确无误。以后还要研究一下。

代码1如下:

/* Program to find LCA of n1 and n2 using one traversal of Binary Tree */
#include <iostream>
#include <vector>
#include <string>
using namespace std;

#include <queue>          // std::priority_queue
#include <vector>         // std::vector
#include <functional>     // std::greater

#include<stdio.h>
 
 #include <stdio.h>
#include <stdlib.h>
 
// A Binary Tree Node
struct Node
{
    int data;
    Node *left, *right;
};
 
// A utility function to create a new Binary Tree node with given data
Node* newNode(int data)
{
    struct Node* node = (struct Node*) malloc(sizeof(struct Node));
    node->data = data;
    node->left = node->right = NULL;
    return node;
}
 
// print the tree in LVR (Inorder traversal) way.
void print(Node*root)
{
    if (root != NULL)
    {
        print(root->left);
        printf("%d ",root->data);
        print(root->right);
    }
}
 
/* Main function which truncates the binary tree. */
void pruneUtil(Node*root, int k, int *sum)
{
    // Base Case
    if (root == NULL)  return;
 
    // Initialize left and right sums as sum from root to
    // this node (including this node)
    int lsum = *sum + (root->data);
    int rsum = lsum;
 
    // Recursively prune left and right subtrees
    pruneUtil(root->left, k, &lsum);
    pruneUtil(root->right, k, &rsum);
 
    // Get the maximum of left and right sums
    *sum = max(lsum, rsum);
 
    // If maximum is smaller than k, then this node
    // must be deleted
    if (*sum < k)
    {
        free(root);
        root = NULL;
    }
}
 
// A wrapper over pruneUtil()
void prune(Node*root, int k)
{
    int sum = 0;
    pruneUtil(root, k, &sum);
}
 
// Driver program to test above function
int main()
{
    int k = 45;
    Node*root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
    root->left->left->left = newNode(8);
    root->left->left->right = newNode(9);
    root->left->right->left = newNode(12);
    root->right->right->left = newNode(10);
    root->right->right->left->right = newNode(11);
    root->left->left->right->left = newNode(13);
    root->left->left->right->right = newNode(14);
    root->left->left->right->right->left = newNode(15);
 
    printf("Tree before truncation\n");
    print(root);
 
    prune(root, k); // k is 45
 
    printf("\n\nTree after truncation\n");
    print(root);
 
    return 0;
}

代码2如下:

#include <stdio.h>
#include <stdlib.h>
 
// A utility function to get maximum of two integers
int max(int l, int r) { return (l > r ? l : r); }
 
// A Binary Tree Node
struct Node
{
    int data;
    struct Node *left, *right;
};
 
// A utility function to create a new Binary Tree node with given data
struct Node* newNode(int data)
{
    struct Node* node = (struct Node*) malloc(sizeof(struct Node));
    node->data = data;
    node->left = node->right = NULL;
    return node;
}
 
// print the tree in LVR (Inorder traversal) way.
void print(struct Node *root)
{
    if (root != NULL)
    {
        print(root->left);
        printf("%d ",root->data);
        print(root->right);
    }
}
 
/* Main function which truncates the binary tree. */
struct Node *pruneUtil(struct Node *root, int k, int *sum)
{
    // Base Case
    if (root == NULL)  return NULL;
 
    // Initialize left and right sums as sum from root to
    // this node (including this node)
    int lsum = *sum + (root->data);
    int rsum = lsum;
 
    // Recursively prune left and right subtrees
    root->left = pruneUtil(root->left, k, &lsum);
    root->right = pruneUtil(root->right, k, &rsum);
 
    // Get the maximum of left and right sums
    *sum = max(lsum, rsum);
 
    // If maximum is smaller than k, then this node
    // must be deleted
    if (*sum < k)
    {
        free(root);
        root = NULL;
    }
 
    return root;
}
 
// A wrapper over pruneUtil()
struct Node *prune(struct Node *root, int k)
{
    int sum = 0;
    return pruneUtil(root, k, &sum);
}
 
// Driver program to test above function
int main()
{
    int k = 45;
    struct Node *root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
    root->left->left->left = newNode(8);
    root->left->left->right = newNode(9);
    root->left->right->left = newNode(12);
    root->right->right->left = newNode(10);
    root->right->right->left->right = newNode(11);
    root->left->left->right->left = newNode(13);
    root->left->left->right->right = newNode(14);
    root->left->left->right->right->left = newNode(15);
 
    printf("Tree before truncation\n");
    print(root);
 
    root = prune(root, k); // k is 45
 
    printf("\n\nTree after truncation\n");
    print(root);
 
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值