特点
- 深入了解机器学习技术和计算技能,以及了解如何使用 edgeR 和 DESeq 等工具。
- 探索真实示例,解决生物信息学领域中常见和不常见的挑战。
- 学习如何使用 Bioconductor、ggplot 和 tidyverse 中的最新工具有效地分析您的数据。
- 引导您了解 Bioconductor 中的基本工具,以帮助您理解和执行 RNAseq、系统发育学、基因组学和序列分析中的协议。
- 快速了解如何在生物信息学领域中使用机器学习技术。
- 将逐渐发展关键的计算技能,例如在 R Markdown 中创建可重用的工作流和代码重用包。
内容
- 执行定量 RNAseq
- 使用 HTS 数据寻找遗传变异
- 搜索基因和蛋白质的域和基序
- 系统发育分析和可视化
- 宏基因组学
- 从光谱到注释的蛋白质组学
- 制作发布和 Web 就绪的可视化
- 使用数据库和远程数据源
- 有用的统计和机器学习方法
- 使用 Tidyverse 和 Bioconductor 进行编程
- 为代码重用构建对象和包
详情参阅 - 亚图跨际