R 生物信息学处理

特点

  1. 深入了解机器学习技术和计算技能,以及了解如何使用 edgeR 和 DESeq 等工具。
  2. 探索真实示例,解决生物信息学领域中常见和不常见的挑战。
  3. 学习如何使用 Bioconductor、ggplot 和 tidyverse 中的最新工具有效地分析您的数据。
  4. 引导您了解 Bioconductor 中的基本工具,以帮助您理解和执行 RNAseq、系统发育学、基因组学和序列分析中的协议。
  5. 快速了解如何在生物信息学领域中使用机器学习技术。
  6. 将逐渐发展关键的计算技能,例如在 R Markdown 中创建可重用的工作流和代码重用包。

内容

  • 执行定量 RNAseq
  • 使用 HTS 数据寻找遗传变异
  • 搜索基因和蛋白质的域和基序
  • 系统发育分析和可视化
  • 宏基因组学
  • 从光谱到注释的蛋白质组学
  • 制作发布和 Web 就绪的可视化
  • 使用数据库和远程数据源
  • 有用的统计和机器学习方法
  • 使用 Tidyverse 和 Bioconductor 进行编程
  • 为代码重用构建对象和包

详情参阅 - 亚图跨际

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值