特点
- 使用 Python 和 R 的数据科学是为没有分析或编程经验的普通读者编写的
- 提供使用 Python 和 R 解决数据科学问题的分步说明和演练
- 涵盖的主题包括数据准备、探索性数据分析、准备数据建模、决策树、模型评估、错误分类成本、朴素贝叶斯分类、神经网络、聚类、回归建模、降维和关联规则挖掘。
- 包括随机森林和一般线性模型等新主题
内容
- 数据分析介绍
- Python 和 R 基础知识
- 数据准备
- 探索性数据分析
- 准备对数据建模
- 决策树
- 模型评估
- 朴素贝叶斯分类
- 神经网络
- 聚类
- 回归建模
- 降维
- 广义线性模型
- 关联规则
详情参阅 - 亚图跨际