Python(C++)植入团图嵌入降维算法

59 篇文章 0 订阅
46 篇文章 0 订阅

🎯要点

🎯图嵌入算法使用欧几里得和双曲嵌入 | 🎯对矢量空间网络节点迭代嵌入和加权 | 🎯对比嵌入算法:拉普拉斯特征映射、指数最短路径长度到双曲度量的变换 、等距映射和生成图上向量表示算法 | 🎯网络节点角度关系余弦距离和余弦接近度计算方式 | 🎯植入分区生成合成图,基准测试生成合成图

📜图节点和边算法用例

📜Python鲁汶意外莱顿复杂图拓扑分解算法

📜Python(C++)大尺度分层边值时变图统计推理并行算法

📜Python层内层外多图布局图基分析

📜Python群体趋向性潜关联有向无向多图层算法

📜Python和MATLAB网络尺度结构和幂律度大型图生成式模型算法

📜Python竞技比赛流体动力学艺术品和药物质量图学习

📜Python元胞自动机沙堆糖景堵塞模型图学习

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇Python等距映射降维算法

等距映射是一种突破线性方法局限性的降维算法。其主要目标是将高维数据中的复杂模式展开到低维空间,同时精心保留数据点之间的基本关系。与假设变量之间存在线性关系的主成分分析等线性方法不同,此算法擅长捕捉底层非线性结构,使其成为各种应用的首选。

算法的核心是一系列步骤,这些步骤共同形成了它揭示复杂数据集内在几何形状的独特能力。该算法首先构建一个邻域图,其中节点代表数据点,边连接彼此距离在一定范围内的节点。邻域图是一种节点代表数据点、边连接彼此距离在一定范围内的节点的图。这个邻域图是算法后续计算的基础结构。为了构建邻域图,我们首先计算所有数据点对之间的欧几里得距离。然后,我们为每个数据点选择 k 个最近邻居,并在图中创建连接这些邻居的边。k 的值是算法的一个参数,可以根据数据进行调整。

所有数据点对之间的欧氏距离:
d i j = ∥ x i − x j ∥ 2 d_{i j}=\left\|x_i-x_j\right\|^2 dij=xixj2
其中, d i j d_{i j} dij 是数据点之间的欧几里得距离, ∥ x i − x j ∥ 2 \left\|x_i-x_j\right\|^2 xixj2 是向量 x i , x j x_i, x_j xi,xj 的欧几里得范数。

邻域图

在图论中,图中顶点 v v v的相邻顶点是通过边连接到 v v v的顶点。图 G G G中顶点 v v v的邻域是由与 v v v相邻的所有顶点导出的 G G G的子图,即由与 v v v相邻的顶点和连接相邻顶点的所有边组成的图到 v v v

示图:

在该图中,与 5 相邻的顶点是 1、2 和 4。5 的邻域是由顶点 1、2、4 以及连接 1 和 2 的边组成的图。

6
4
5
3
1
2

然后,算法深入研究了测地线距离领域,这一概念对于理解非线性流形的真实结构至关重要。邻域图中两点之间的测地线距离定义为沿图边缘的最短路径,用于测量流形曲面上的距离。与代表直线测量的欧几里得距离不同,测地线距离对底层结构很敏感,可以捕捉数据的真实复杂性。为了通过计算邻域图边缘两点之间的最短路径来近似测地线距离,可以使用多种算法。

算法的最后一步是应用多维缩放,这是一种降维技术,旨在找到数据的低维表示,以保留数据点之间的成对距离。一旦计算出测地线距离,算法就会将数据嵌入到低维空间中。此嵌入使用称为谱嵌入的技术执行。谱嵌入是一种降维技术,其工作原理是查找图拉普拉斯的主成分。图拉普拉斯是一个表示邻域图连通性的矩阵。算法的神奇之处在于应用谱嵌入。图拉普拉斯是一个表示邻域图连通性的矩阵,它封装了数据点之间的关系和接近度。通过揭示主成分,算法成功地将数据嵌入到低维空间中,同时精心保留了必要的几何关系。

降维算法识别手写数字

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.manifold import Isomap
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
digits = load_digits()
X, y = digits.data, digits.target
scaler = StandardScaler()
X_standardized = scaler.fit_transform(X)

以下代码创建一个具有 30 个邻居和 2 个输出维度的算法模型,然后将该模型拟合到标准化输入数据并将其转换到低维空间。

isomap = Isomap(n_neighbors=30, n_components=2)
X_transformed = isomap.fit_transform(X_standardized)

以下代码创建数据点的散点图,可视化 MNIST 数据集中手写数字的二维表示,每个数字类别用不同的颜色表示。该图包含一个供参考的颜色条。

plt.figure(figsize=(10, 8))
scatter = plt.scatter(X_transformed[:, 0], X_transformed[:, 1], c=y, cmap='viridis', edgecolors='k', s=20)
plt.title('2D Representation of Handwritten Digits (MNIST)')
plt.xlabel('Component 1')
plt.ylabel('Component 2')
plt.colorbar(scatter, ticks=np.arange(10), label='Digit Class')

plt.show()

这里,每个数字类别都用不同的颜色表示,从而显示出与不同数字相对应的不同聚类。此可视化展示了 算法在降低数据维度的同时保留数据底层结构的有效性。

👉参阅、更新:计算思维 | 亚图跨际

  • 10
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
UMAP(Uniform Manifold Approximation and Projection)是一种基于流形学习的降维算法,可以用于可视化高维数据,类似于 t-SNE 等算法。在 Python 中,可以使用 umap-learn 包来实现 UMAP 算法的调用。下面是安装和使用 umap-learn 包的步骤: 1. 安装 umap-learn 包 可以使用 pip 命令来安装 umap-learn 包: ``` pip install umap-learn ``` 2. 导入 umap-learn 包 在 Python 代码中,使用以下语句导入 umap-learn 包: ```python import umap ``` 3. 调用 UMAP 算法 使用 umap-learn 包中的 UMAP 类来调用 UMAP 算法。以下是一个示例代码: ```python import numpy as np import umap # 生成随机数据 X = np.random.rand(100, 10) # 调用 UMAP 算法 umap_obj = umap.UMAP(n_neighbors=5, min_dist=0.3, metric='correlation') umap_result = umap_obj.fit_transform(X) # 输出降维后的结果 print(umap_result) ``` 在上面的示例代码中,我们先生成了一个 100 行 10 列的随机数据集。然后,使用 UMAP 类来调用 UMAP 算法,并将参数 n_neighbors 设置为 5,min_dist 设置为 0.3,metric 设置为 correlation。最后,使用 fit_transform 方法将数据集 X 降维,并将结果保存在 umap_result 变量中。最后,我们输出了降维后的结果。 注意,UMAP 算法适用于高维数据集,但是如果数据集的维过高,UMAP 算法可能需要较长的计算时间。因此,在使用 UMAP 算法时,应该根据具体情况来调整参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值