逆元的几种求法

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

这篇文章主要讲一下乘法逆元的3种不同的求法。


一、费马小定理。

非常好用的一个结论,我们只需要会用即可。
但是这里适用的场景有限制,必须在模数为质数的情况下进行。

1.代码如下

#include<iostream>
using namespace std;
const int N=500;
using ll=long long;
//只适用于模数为质数的时候
ll cheak(ll a,ll b,ll mod){
    ll res=1;
    while(b){
        if(b&1)
            res=(res*a)%mod;
        b>>=1;
        a=(a*a)%mod;
    }
    return res%mod;
}

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    ll n,p;
    cin>>n>>p;
   for(int i=1;i<=n;i++){
      cout<<cheak(i,p-2,p)<<endl;
   }
}

二、拓展欧几里得算法求解。

这一个比上一个算法的适用范围要广一些,对于求单个逆元的效率比绝大多数方法都要快一些。
在这里插入图片描述
这里的区别在于把gcd(a,b)改为1.
ax+by=1
当b=0时x=1,y=0;
by+(a%b)x=1;
b
y+(a-a/b
b)x=1;
继续展开:
a
x+b*(y-a/bx)=1;
x在这里是没有变化的,但是y–>y-a/b
x

实际上下面的代码返回值是没有用的。

1.代码如下

#include<iostream>
using namespace std;
const int N=500;
using ll=long long;

ll exdege(ll a,ll b,ll &x,ll &y){
    if(!b) {
        x = 1, y = 0;//(0和任何数的最大公约数都是这一个数,所以让x=1,y=0,就是解)
        return a;
    }
    exdege(b,a%b,y,x);
    y-=a/b*x;
    return 1;
}
int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    ll n,p;
    cin>>n>>p;
   for(int i=1;i<=n;i++){
       ll x,y;
       exdege(i,p,x,y);
       cout<<(x%p+p)%p<<endl;
   }
}

3.线性求一连串的逆元

前面的两种算法在面临一连串数求逆元的时候效率过低,所以引如下面这种解法。
代码如下(示例):

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;

const int N=1e7;

ll inv[N],n,p;
int main(){
//    ios::sync_with_stdio(0);
//    cin.tie(0);
//    cout.tie(0);
    scanf("%lld%lld",&n,&p);
    inv[1]=1;
    cout<<1<<endl;
    for(int i=2;i<=n;i++){
        inv[i]=(ll)(p-p/i)*inv[p%i]%p;
        printf("%lld\n",inv[i]);
    }
}

题目链接

传送门

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值