逆元的三种求法

先贴一手我的拓展欧几里得算法详解,理解这个在理解拓展欧几里得之后比较好:

https://blog.csdn.net/qq_49593247/article/details/119974023

1.费马小定理

当存在两个数,a,p.且两者互质,即两者gcd(最大公约数)为1,可以得到a^(p-1)=1(mod p).那么可以化为a*a^(p-2)=1(mod p).那么a的逆元就是a^(p-2).

数据比较小可以采用暴力求解,如果数据比较大可以用快速幂求解.

2.拓展欧几里得算法

如果是拓展欧几里得算法求逆元,我们知道,拓展欧几里得算法是求ax+by=gcd(a,b)*k的解.但是这个式子可以化为ax=1(mod b),那么可以确定,该线性式的最小整数解x就是a的逆元:

void exgcd(int a,int b,int &x,int &b)
{
    if(b==0)
    {
        x=1;
        y=0;
        return ;
    }
    exgcd(b,a%b,x,y);
    int temp=y;
    y=x-(a/b)*y;
    x=temp;
}
int getinv(int n)
{
    int x,y;
    exgcd(a,b,x,y);
    x = (a % b + b) % b;
    return x;
}

3.线性求逆元

如果是求i的逆元模数为p,我们可以得到:

p=ak+b

可以化为a*k+b≡0(mod p),再将两边同是乘以k的逆元与b的逆元之积,可以化为:

a(b^(-1))+k^(-1)≡0(mod p)

k^(-1)≡-a(b^(-1))(mod p)

又有a=p/k,b=p%k,带入上面的式子:

k^(-1)=-(p/k)*(p%k)^(-1)

此处的k^(-1)为k的逆元.为了防止此处求出一个负数,我们可以加上一个p,并且去%一个p,当然注意这里是对一个数组进行预处理,求出所有所求范围的逆元,以O(1)的时间复杂度求逆元,所以我们要知道上一步的逆元也就是p%k的逆元,所以第一位1的逆元我们要初始化为1.代码如下:



    inv[1]=1;
    for(int i=2;i<=n;i++)
       inv[i]=(p-p/i)*inv[p%i]%p;
     
  

以上即为较为常见的三种求逆元的方法.

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值