基于逻辑回归的分类预测

逻辑回归算法原理(个人理解)

虽然叫逻辑回归,但就是一个很牛的二分类算法,是因为非常简单,实践非常容易,实际效果也不错!一般呢,我都是先用 逻辑回归,再用其他算法。(估计很多人,也是这样吧!)

Sigmoid函数

  1. 公式 :f(x)=1/(1+e^-x);自变量的取值范围即为任意实数【-∞,+∞】,值域则为【0.1】
  2. 假设,当有线性回归预测一个值 ,放到sigmoid函数中 ,必须是一个实数值 ,此时y轴取值为【0.1】,这的确有一点抽象,建议各位根据图理解一下!函数图像

##补充
什么是回归和分类?
回归:如房价,天气,股票都市连续性(在数学上表示连续性的);
分类:如一间大房子分成很多小间 (在数学上表示离散型的);

问题解决思路

不管分类还是回归,解决问题的思路就是 :
1.构造预测值;
2.构造损失函数;
{ 就是构造一个预测函数,在构造一个损失函数(真实值和预测值的偏差,这里注意不一定是差值哦!)即当损失函数的偏差最小时,算法最准确。}
3.使损失函数达到最小值;

以下代码为Datawhale获取,使用天池实验室挂载数据运行。

1 代码流程
Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践

Step1:库函数导入
Step2:数据读取/载入
Step3:数据信息简单查看
Step4:可视化描述
Step5:利用 逻辑回归模型 在二分类上 进行训练和预测
Step6:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

Step1

##  基础函数库
import numpy as np 
import pandas as pd

## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as snsn

Step2

##我们利用sklearn中自带的iris数据作为数据载入,并利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

Step3

##利用.info()查看数据的整体信息
iris_features.info()

##<class'pandas.core.frame.DataFrame'>
##RangeIndex:150entries,0to149
##Datacolumns(total4columns):
###ColumnNon-NullCountDtype
##----------------------------
##0sepallength(cm)150non-nullfloat64
##1sepalwidth(cm)150non-nullfloat64
##2petallength(cm)150non-nullfloat64
##3petalwidth(cm)150non-nullfloat64
##dtypes:float64(4)
##memoryusage:4.8KB

Step4

## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target
## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()

在这里插入图片描述
从上图可以发现,在2D情况下不同的特征组合对于不同类别的花的散点分布,以及大概的区分能力。

for col in iris_features.columns:
    sns.boxplot(x='target', y=col, saturation=0.5, 
palette='pastel', data=iris_all)
    plt.title(col)
    plt.show()

这里还可以利用箱形图得到不同类别在不同特征上的分布差异

step5

##为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split
##选择其类别为0和1的样本(不包括类别为2的样本)
iris_features_part=iris_features.iloc[:100]
iris_target_part=iris_target[:100]
##测试集大小为20%,80%/20%分
x_train,x_test,y_train,y_test=train_test_split(iris_features_part,iris_target_part,test_size=0.2,random_state=2020)
##从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
##在训练集上训练逻辑回归模型
clf.fit(x_train,y_train)
##查看其对应的w
print('the weight of Logistic Regression:',clf.coef_)

##查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)

##在训练集和测试集上分布利用训练好的模型进行预测
train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test)
from sklearn import metrics
##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

##查看混淆矩阵(预测值和真实值的各类情况统计矩阵)
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

##利用热力图对于结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predictedlabels')
plt.ylabel('Truelabels')
plt.show()

##The accuracy of the Logistic Regressionis:1.0
##The accuracy of the Logistic Regressionis:1.0
##The confusion matrix result:
##[[9  0]
##[0  11]]

我们可以发现其准确度为1,代表所有的样本都预测正确了我们可以发现其准确度为1,代表所有的样本都预测正确了
Step 6

##测试集大小为20%,80%/20%分
x_train,x_test,y_train,y_test=train_test_split(iris_features,iris_target,test_size=0.2,random_state=2020)

##定义逻辑回归模型
clf=LogisticRegression(random_state=0,solver='lbfgs')

##在训练集上训练逻辑回归模型
clf.fit(x_train,y_train)

##查看其对应的w
print('the weight of Logistic Regression:\n',clf.coef_)

##查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)

##由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类
##在训练集和测试集上分布利用训练好的模型进行预测
train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test)
##由于逻辑回归模型是概率预测模型(前文介绍的p=p(y=1|x,\theta)),所有我们可以利用predict_proba函数预测其概率

train_predict_proba=clf.predict_proba(x_train)
test_predict_proba=clf.predict_proba(x_test)

print('The test predict Probability of each class:\n',test_predict_proba)
##其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

##查看混淆矩阵
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

##利用热力图对于结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

##The confusion matrix result:
##[[10  0   0]
##[0   8   2] 
##[0   2   8]]

在这里插入图片描述
总结
1.使用logistic就是把测试集每个特征乘以最优方法的回归系数,求和后,映射到sigmoid函数中,此时则有 当sigmoid函数值域 >0.5为 I,<0.5为 0。

2.在150个样本中,如果出现数据缺失的,或是特征无效呢!这个时候要怎么办呢!是否有如何处理缺失数据的标准答案呢,这是一个值得思考的问题!

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值