Max Sum

Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.

Input

The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).

Output

For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.

Sample Input

2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5

Sample Output

Case 1:
14 1 4

Case 2:
7 1 6

代码:

#include<stdio.h>
    #include<iostream>
    #include<stdlib.h>
    #include<algorithm>
    #include<string.h>
    using namespace std;
    int main()
    {
        long long int n,t,i,q,k,st,en,summax,sum,a[100002];
        scanf("%lld",&t);
        for(q=1;q<=t;q++)
        {
            k=1,st=0,en=0,summax=-1000,sum=0;
            scanf("%lld",&n);
            for(i=1;i<=n;i++)
                scanf("%lld",&a[i]);
            for(i=1;i<=n;i++)
            {
                sum+=a[i];
                if(sum>summax)
                {
                    summax=sum;
                    st=k;
                    en=i;
                }
                if(sum<0)
                {
                    sum=0;
                    k=i+1;
                }
            }
            printf("Case %lld:\n%lld %lld %lld\n",q,summax,st,en);
            if(q!=t)
                printf("\n");
        }
        return 0;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值