正则化

问题引入

在这里插入图片描述
当预测函数的项次数过高时,算法为了降低代价,也就是差异,会跑出一条畸形的曲线。

虽然这条畸形的曲线完美的拟合了所有的数据点,但是显然这样一条曲线并不具有可推广性、泛化性。对于以后给出的数据也不能准确的预测。这种情况称为拟合过度

一般在数据量较小,而特征值较多的情况下,过度拟合发生的概念较高。

正则化

为了在保留较小的高次项的基础上,解决过度拟合,我们需要进行正则化。

我们对于原有的代价函数 J ( θ ) J(\theta) J(θ),使之增加对于高次项的惩罚,例如:
J ( θ ) : = J ( θ ) + 1000 θ 4 2 J(\theta):=J(\theta)+1000\theta_4^2 J(θ):=J(θ)+1000θ42
这样做的影响很明显,最后的预测函数中, θ 4 \theta_4 θ4会尽可能的小。


但是实际上,我们需要让预测函数曲线更加的平滑,这需要使所有的参数都不要太大,所以,一般的正则化如下:
在这里插入图片描述
注意,由于 θ 0 \theta_0 θ0影响的只是预测值的上下浮动距离,所以并不需要对其正则化。

正则化…… λ \lambda λ

λ \lambda λ是正则化参数,用于调节对这些参数的惩罚力度。

使用正则化后,我们的代价函数其实做到了两方面事情:拟合、防止过度拟合。而 λ \lambda λ起到了一个调节天平的作用。

λ \lambda λ过小,相当于没有正则化,起不到防止过度拟合的作用。

λ \lambda λ过大,会导致除 θ 1 \theta_1 θ1外的项都趋近于0,最后的预测函数图像就类似一条水平线,我们称之为欠拟合
在这里插入图片描述

正则化……线性回归……梯度下降法

我们将 J ( θ ) J(\theta) J(θ)写成上述形式后, J ( θ ) J(\theta) J(θ) θ 1 . . . θ n \theta_1...\theta_n θ1...θn求偏导数的结果如下:
在这里插入图片描述
移项后变为:
在这里插入图片描述

正则化……线性回归……特征方程法

在求逆之前加上一个如下矩阵:
在这里插入图片描述
值得注意的是,加完这个矩阵后,结果的矩阵一定可逆,也就不需要使用伪逆运算了。

正则化……逻辑回归

在代价函数上加一项 λ 2 m ∑ j = 1 n θ j 2 \dfrac{\lambda}{2m}\sum_{j=1}^n\theta_j^2 2mλj=1nθj2即可避免过度拟合。
在这里插入图片描述
最后的偏导数部分,和你想的一样,除了 h θ ( x ) h_\theta(x) hθ(x)意义不同外,其它都是一样的:
在这里插入图片描述

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值