杜教筛(下):狄利克雷卷积

定义:

定义 f , g f,g f,g两个积性函数的狄利克雷卷积运算(*)为: ( f ∗ g ) ( n ) = ∑ d ∣ n f ( d ) ∗ g ( n d ) (f*g)(n)=\sum_{d|n}f(d)*g(\frac{n}{d}) (fg)(n)=dnf(d)g(dn)

性质:

狄利克雷卷积满足:

  1. 交换律: f ∗ g = g ∗ f f*g=g*f fg=gf
  2. 结合律: ( f ∗ g ) ∗ h = f ∗ ( g ∗ h ) (f*g)*h=f*(g*h) (fg)h=f(gh)
  3. 分配律: f ∗ ( g + h ) = f ∗ h + g ∗ h f*(g+h)=f*h+g*h f(g+h)=fh+gh
  4. 单位元: f ∗ e = f f*e=f fe=f

常见函数卷积:

这里写图片描述
μ ∗ 1 = ϵ μ∗1=ϵ μ1=ϵ (莫比乌斯函数与1互为逆元)
ϕ ∗ 1 = I d ϕ∗1=Id ϕ1=Id (欧拉函数与n互为逆元)
ϕ = I d ∗ μ ϕ=Id∗μ ϕ=Idμ (莫比乌斯与欧拉的关系)

d = 1 ∗ 1 d=1∗1 d=11
1 = μ ∗ d 1=μ∗d 1=μd


杜教筛:

由于涉及内容太多,分成两篇博客进行讲述,建议先看前一篇,就当你已经看完前一篇了,我这里会讲的快一点

∑ i = 1 n f ( i ) \sum_{i=1}^nf(i) i=1nf(i),设为 A n s ( n ) Ans(n) Ans(n)

找一个积性函数g(x),那么 ∑ i = 1 n ( f ∗ g ) ( i ) = ∑ i = 1 n ∑ d ∣ i g ( d ) ∗ f ( i d ) \sum_{i=1}^{n}(f*g)(i)=\sum_{i=1}^{n}\sum_{d|i}g(d)*f(\frac{i}{d}) i=1n(fg)(i)=i=1ndig(d)f(di)

显然: ∑ i = 1 n ∑ d ∣ i = ∑ d = 1 n ∑ d ∣ i i &lt; = n \sum_{i=1}^{n}\sum_{d|i}=\sum_{d=1}^{n}\sum_{d|i}^{i&lt;=n} i=1ndi=d=1ndii<=n

那么: ∑ i = 1 n ( f ∗ g ) ( i ) = ∑ d = 1 n ∑ d ∣ i i &lt; = n g ( d ) ∗ f ( n d ) = ∑ d = 1 n g ( d ) ∑ j = 1 [ n d ] f ( j ) \sum_{i=1}^{n}(f*g)(i)=\sum_{d=1}^{n}\sum_{d|i}^{i&lt;=n}g(d)*f(\frac{n}{d})=\sum_{d=1}^{n}g(d)\sum_{j=1}^{[\frac{n}{d}]}f(j) i=1n(fg)(i)=d=1ndii<=ng(d)f(dn)=d=1ng(d)j=1[dn]f(j)

接下来和前一篇一样: ∵ ∑ d = 1 n g ( d ) ∑ j = 1 [ n d ] f ( j ) = ∑ d = 2 n g ( d ) ∑ j = 1 [ n d ] f ( j ) + g ( 1 ) ∑ j = 1 n f ( j ) ∴ g ( 1 ) ∗ A n s ( n ) = ∑ i = 1 n ( f ∗ g ) ( i ) − ∑ d = 2 n g ( d ) A n s ( n / d ) \because\sum_{d=1}^{n}g(d)\sum_{j=1}^{[\frac{n}{d}]}f(j)=\sum_{d=2}^{n}g(d)\sum_{j=1}^{[\frac{n}{d}]}f(j)+g(1)\sum_{j=1}^{n}f(j)\\\therefore g(1)*Ans(n)=\sum_{i=1}^{n}(f*g)(i)-\sum_{d=2}^{n}g(d)Ans(n/d) d=1ng(d)j=1[dn]f(j)=d=2ng(d)j=1[dn]f(j)+g(1)j=1nf(j)g(1)Ans(n)=i=1n(fg)(i)d=2ng(d)Ans(n/d)

结论

A n s ( n ) = ∑ i = 1 n ( f ∗ g ) ( i ) − ∑ d = 2 n g ( d ) A n s ( n / d ) g ( 1 ) Ans(n)=\dfrac{\sum_{i=1}^{n}(f*g)(i)-\sum_{d=2}^{n}g(d)Ans(n/d)}{g(1)} Ans(n)=g(1)i=1n(fg)(i)d=2ng(d)Ans(n/d)

按照上一篇的说法,递归+整除分块+线性筛 收尾。


例题:

∑ i = 1 n ϕ ( i ) ∗ i \sum_{i=1}^n\phi(i)*i i=1nϕ(i)i

显然,如果卷一个函数1的话,变成 ∑ i = 1 n ∑ d ∣ i ϕ ( d ) ∗ d \sum_{i=1}^n\sum_{d|i}\phi(d)*d i=1ndiϕ(d)d,好像并没有什么简单的化简,而卷一个函数 I d Id Id的话,就变成了 ∑ i = 1 n ∑ d ∣ i ϕ ( d ) ∗ d ∗ i d → ∑ i = 1 n i ∑ d ∣ i ϕ ( d ) → ∑ i = 1 n i 2 \sum_{i=1}^n\sum_{d|i}\phi(d)*d*\frac{i}{d}\to\sum_{i=1}^ni\sum_{d|i}\phi(d)\to\sum_{i=1}^ni^2 i=1ndiϕ(d)ddii=1nidiϕ(d)i=1ni2而得到: 令 : f ( i ) = ϕ ( i ) ∗ i &ThickSpace; , &ThickSpace; g ( i ) = i &ThickSpace; , &ThickSpace; A n s ( n ) = ∑ i = 1 n ϕ ( i ) ∗ i 得 : A n s ( n ) = ∑ i = 1 n ( f ∗ g ) ( i ) − ∑ d = 2 n g ( d ) A n s ( n / d ) g ( 1 ) = ∑ i = 1 n i 2 − ∑ d = 2 n d ∗ A n s ( n / d ) 令:f(i)=\phi(i)*i\;,\;g(i)=i\;,\;Ans(n)=\sum_{i=1}^n\phi(i)*i\\得:Ans(n)=\dfrac{\sum_{i=1}^{n}(f*g)(i)-\sum_{d=2}^{n}g(d)Ans(n/d)}{g(1)}\\=\sum_{i=1}^{n}i^2-\sum_{d=2}^{n}d*Ans(n/d) f(i)=ϕ(i)i,g(i)=i,Ans(n)=i=1nϕ(i)iAns(n)=g(1)i=1n(fg)(i)d=2ng(d)Ans(n/d)=i=1ni2d=2ndAns(n/d)这题就变得异常简单了


总结

当求积性函数前缀和不好求的时候,用狄利克雷卷上一个积性函数,使卷完后的式子的前缀和变得简单,卷完后的前缀和算出来基本上题目就完成了

  • 如果出现 ϕ ( x ) \phi(x) ϕ(x),那么就凑 ∑ d ∣ n ϕ ( d ) = n \sum_{d|n}\phi(d)=n dnϕ(d)=n
  • 如果是 u ( x ) u(x) u(x),就凑 ∑ d ∣ n n ̸ = 1 u ( d ) = 0 \sum_{d|n}^{n\not=1}u(d)=0 dnn̸=1u(d)=0

做题过程

  • 想办法凑出 ∑ i = 1 n ∑ d ∣ i f ( d ) \sum_{i=1}^n\sum_{d|i}f(d) i=1ndif(d),且要求这个式子可以直接求出来。
  • 转化这个式子为 ∑ i = 1 n ∑ j = 1 ⌊ n i ⌋ f ( d ) \sum_{i=1}^n\sum_{j=1}^{\lfloor \frac{n}{i}\rfloor }f(d) i=1nj=1inf(d),再拆出要求的答案: ∑ i = 1 n ∑ j = 1 ⌊ n i ⌋ f ( d ) = ∑ i = 2 n ∑ j = 1 ⌊ n i ⌋ f ( d ) + ∑ j = 1 n f ( d ) \sum_{i=1}^n\sum_{j=1}^{\lfloor \frac{n}{i}\rfloor }f(d)=\sum_{i=2}^n\sum_{j=1}^{\lfloor \frac{n}{i}\rfloor }f(d)+\sum_{j=1}^nf(d) i=1nj=1inf(d)=i=2nj=1inf(d)+j=1nf(d)
  • ∑ i = 2 n ∑ j = 1 ⌊ n i ⌋ f ( d ) \sum_{i=2}^n\sum_{j=1}^{\lfloor \frac{n}{i}\rfloor }f(d) i=2nj=1inf(d)这部分往下递归做即可。
  • f ( i ) = ϕ ( i ) f(i)=\phi(i) f(i)=ϕ(i)或者 u ( i ) u(i) u(i)时, ∑ d ∣ n f ( i ) \sum_{d|n}f(i) dnf(i)可以直接求出来,但是当 f ( i ) = i ∗ u ( i ) f(i)=i*u(i) f(i)=iu(i)时就不行了,得卷积一个 g ( i ) = i g(i)=i g(i)=i,此时 ∑ i = 1 n f ∗ g = ∑ i = 1 n ∑ d ∣ i f ( d ) g ( i d ) = ∑ i = 1 n ∑ d ∣ i u ( d ) = 1 \sum_{i=1}^nf*g=\sum_{i=1}^n\sum_{d|i}f(d)g(\frac{i}{d})=\sum_{i=1}^n\sum_{d|i}u(d)=1 i=1nfg=i=1ndif(d)g(di)=i=1ndiu(d)=1
  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值