狄利克雷卷积
狄利克雷卷积是一种定义在两个数论函数函数上的运算,狄利克雷卷积有两种形式:
( f ∗ g ) ( n ) = ∑ d ∣ n f ( d ) g ( n d ) (f * g)(n) = \sum_{d \mid n}f(d)g(\frac{n}{d}) (f∗g)(n)=d∣n∑f(d)g(dn)
或者:
( f ∗ g ) ( n ) = ∑ x y = n f ( x ) g ( y ) (f * g)(n) = \sum_{xy = n}f(x)g(y) (f∗g)(n)=xy=n∑f(x)g(y)
积性函数
为了以后讨论方便,定义如下数论函数:
- 单位函数: ϵ ( n ) \epsilon(n) ϵ(n),当 n = 1 n=1 n=1的时候,函数值为 1 1 1,其他情况为 0 0 0。
- 幂函数: I d k ( n ) = n k Id_{k}(n)=n^{k} Idk(n)=nk,当 k = 1 k=1 k=1为恒等函数 I d 1 ( n ) = n Id_{1}(n)=n Id1(n)=n,当 k = 0 k=0 k=0的时候为常值函数, I d 0 ( n ) = 1 Id_{0}(n)=1 Id0(n)=1。
- 常数函数: 1 ( n ) = 1 1(n)=1 1(n)=1。
- 整除函数: σ k ( n ) = ∑ d ∣ n d k \sigma_{k}(n)=\sum_{d \mid n}d^{k} σk(n)=∑d∣ndk。当 k = 0 k=0 k=0的时候为因数量函数。当 k = 1 k=1 k=1的时候为因数和函数。
- 欧拉函数 φ ( n ) \varphi(n) φ(n)。表示小于 n n n与n互质的正整数的数量。
- 莫比乌斯: μ ( n ) \mu(n) μ(n),定义为 1 ( n ) 1(n) 1(n)的狄利克雷卷积的逆元函数。
上述函数都是积性函数,积性函数定义为 f ( x ∗ y ) = f ( x ) f ( y ) f(x * y)=f(x)f(y) f(x∗y)=f(x)f(y)当且仅当 gcd ( x , y ) = 1 \gcd(x,y)=1 gcd(x,y)=1成立,当 f ( x ∗ y ) = f ( x ) f ( y ) f(x * y)=f(x)f(y) f(x∗y)=f(x)f(y)恒成立则称 f ( x ) f(x) f(x)为完全积性函数。
下列函数同为积性函数, f f f和 g g g均为积性函数。
h ( x ) = f ( x p ) h ( x ) = f p ( x ) h ( x ) = f ( x ) g ( x ) h ( x ) = ∑ d ∣ x f ( d ) g ( x d ) \begin{aligned} h(x)&=f(x^p)\\ h(x)&=f^p(x)\\ h(x)&=f(x)g(x)\\ h(x)&=\sum_{d\mid x}f(d)g(\frac{x}{d}) \end{aligned} h(x)h(x)h(x)h(x)=f(xp)=fp(x)=f(x)g(x)=d∣x∑f(d)g(dx)
狄利克雷卷积有个重要的特性,若 f f f和 g g g均为积性函数,则卷积 f ∗ g f*g f∗g仍为积性函数。
狄利克雷卷积函数
将上述数论函数两两做卷积,可以得到一些新的数论函数:
除数函数与幂函数
设 f f f为积性数论函数:
( f ∗ 1 ) ( n ) = ∑ d ∣ n f ( d ) 1 ( n d ) = ∑ d ∣ n f ( d ) (f*1)(n) = \sum_{d \mid n}f(d)1(\frac{n}{d}) = \sum_{d \mid n}f(d) (f∗1)(n)=d∣n∑f(d)1(dn)=d∣n∑f(d)
即一个积性数论函数和常数函数做卷积得到的结果是因数函数值的和。
例如,幂函数:
( I d k ∗ 1 ) ( n ) = ∑ d ∣ n I d k ( d ) = ∑ d ∣ n d k = σ k ( n ) (Id_{k}*1)(n) = \sum_{d \mid n}Id_{k}(d) = \sum_{d \mid n}d^{k} = \sigma_{k}(n) (Idk∗1)(n)=∑d∣nIdk(d)=∑d∣ndk=σk(n)
这样可以构建起除数函数与幂函数之间的关系。
欧拉函数与恒等函数
( φ ∗ 1 ) ( n ) = ∑ d ∣ n φ ( d ) (\varphi * 1)(n) = \sum_{d \mid n}\varphi(d) (φ∗1)(n)=d∣n∑φ(d)
当 n = p m n=p^{m} n=pm的时候,其中 p p p为质数,因此:
( φ ∗ 1 ) ( p m ) = ∑ d ∣ P m φ ( d ) = 1 + ∑ i = 0 m φ ( p 1 ) = 1 + ∑ i = 0 m p i − p i − 1 = p m (\varphi * 1)(p^{m}) = \sum_{d \mid P^{m}}\varphi(d) = 1 + \sum_{i=0}^{m}\varphi(p^{1}) = 1 + \sum_{i=0}^{m}p^{i} - p^{i-1} = p^{m} (φ∗1)(pm)=d∣Pm∑φ(d)=1+i=0∑mφ(p1)=1+i=0∑mpi−pi−1=pm
因此:
( φ ∗ 1 ) ( p m ) = p m (\varphi * 1)(p^{m}) = p^{m} (φ∗1)(pm)=pm
所以当 n = p m n=p^{m} n=pm的时候,函数为恒等函数。
推论:
现在令 n n n为任意正整数,将 n n n进行质因数分解,每一个质因项为 p i m i p_{i}^{m_{i}} pimi,又因为 ( φ ∗ 1 ) ( n ) (\varphi * 1)(n) (φ∗1)(n)为积性函数,故 ( φ ∗ 1 ) ( n ) = n (\varphi * 1)(n)=n (φ∗1)(n)=n。
因此,当 n n n为任意正整数的时候,该卷积也为恒等函数。
狄利克雷卷积的特性
交换律
( f ∗ g ) ( n ) = ( g ∗ f ) ( n ) (f*g)(n)=(g*f)(n) (f∗g)(n)=(g∗f)(n)
结合律
( f ∗ ( g ∗ m ) ) ( n ) = ( ( f ∗ g ) ∗ m ) ( n ) (f*(g*m))(n)=((f*g)*m)(n) (f∗(g∗m))(n)=((f∗g)∗m)(n)
分配率
( f ∗ ( g + m ) ) ( n ) = ( f ∗ g ) ( n ) + ( f ∗ m ) ( n ) (f*(g+m))(n)=(f*g)(n)+(f*m)(n) (f∗(g+m))(n)=(f∗g)(n)+(f∗m)(n)
单位元
( ϵ ∗ f ) ( n ) = ∑ d ∣ n f ( d ) ϵ ( n d ) = f ( n ) (\epsilon * f)(n) = \sum_{d \mid n}f(d)\epsilon(\frac{n}{d})=f(n) (ϵ∗f)(n)=d∣n∑f(d)ϵ(dn)=f(n)
因此任何函数和单位函数做卷积都等于本身。
逆元
若对于积性数论函数 f f f,存在函数 g g g,使得 ( f ∗ g ) ( n ) = ϵ ( n ) (f*g)(n)=\epsilon(n) (f∗g)(n)=ϵ(n),则称 g g g为 f f f的狄利克雷逆元,并记为 f − 1 f^{-1} f−1。
我们令 n = 1 n=1 n=1,得到 f − 1 ( − 1 ) = 1 f ( 1 ) f^{-1}(-1)=\frac{1}{f(1)} f−1(−1)=f(1)1,因此逆元存在的必要条件为 f ( 1 ) ≠ 0 f(1) \neq 0 f(1)=0。
其实 f − 1 ( 1 ) = 1 f ( 1 ) f^{-1}(1)=\frac{1}{f(1)} f−1(1)=f(1)1,其他情况 f − 1 ( n ) = − 1 f ( 1 ) ∑ d ∣ n , d > 1 f ( d ) f − 1 ( n d ) f^{-1}(n)=-\frac{1}{f(1)}\sum_{d \mid n,d > 1}f(d)f^{-1}(\frac{n}{d}) f−1(n)=−f(1)1∑d∣n,d>1f(d)f−1(dn)。
并且 f − 1 f^{-1} f−1仍为积性函数。
证明略。