计蒜客 合法分数的组合

题目描述:

输入一个自然数N,我们总可以得到一些满足“1≤b≤N,0≤a/b≤1”条件的最简分数a/b(分子和分母互质的分数),请找出所有满足条件的分数。

比方说,当N=5时,所有解为:

0/1 1/5 1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 1/1

现在,你需要对于一个给定的自然数N,1≤N≤160,请编程按分数值递增的顺序输出所有解。

注:0和任意自然数的最大公约数就是那个自然数、互质指最大公约数等于1的两个自然数。

输入包括一个给个给定的自然数N

输出为一个列表,每个分数单独占一行,按照实际大小从小到大排列

样例输入
5
样例输出
0/1
1/5
1/4
1/3
2/5
1/2
3/5
2/3
3/4
4/5
1/1

思路:

 这是一道在枚举列表中的题目,有点类似暴力破解,b从1到N,然后a满足(分子和分母互质)的条件,将所有可能都枚举出来,接着排序,输出。

 满足(分子和分母互质)的条件:先枚举出一个b,然后再枚举a,用“辗转相除法”判断a和b是否满足要求,如果满足就放入相对应的数组中。

 排序:第一次遇到分数排序,没有找到思路,网上找了一些别人的代码,其实和冒泡差不多的思路。


代码:

//https://nanti.jisuanke.com/t/30
#include<iostream>
using namespace std;
int gcb(int x,int y)
{
	int c;
    c=x%y;
    while( c!=0 )
    {
        x=y;
        y=c;
        c=x%y;
    }
    return y;
}

int main()
{
	int N;
	int a[10000]={0},b[10000]={0};
	int c;
	int i,j;
	int k=0;
	scanf("%d",&N);
	for(i=2;i<=N;i++)
	{
		for(j=1;j<=i;j++)
		{
			c=gcb(i,j);
			if(c==1)
			{
				k++;
				a[k]=j;
				b[k]=i;	
			}
		}
	}
	//SORT
	for(i=1;i<=k;i++)
	{
		for(j=i+1;j<=k;j++)
		{
			float c=a[i]*1.0/b[i];
			float d=a[j]*1.0/b[j];
			if(c>d)
			{
				int t;
				t=a[j];
				a[j]=a[i];
				a[i]=t;
				
				t=b[j];
				b[j]=b[i];
				b[i]=t;
			}
		} 
	}
	cout<<"0/1"<<endl;
	for(i=1;i<=k;i++)
		cout<<a[i]<<"/"<<b[i]<<endl;
	cout<<"1/1"<<endl;
	return 0;
 } 




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值