斐波那契查找算法

 斐波那契查找原理,仅仅改变了中间结点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即mid=low+F(k-1)-1(F代表斐波那契数列)

F[k]=F[k-1]+F[k-2],==>(F[k]-1) = (F[k-1]-1)+(F[k-2]-1)+1

说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段

从而得到中间位置mid = low+F(k-1)-1

package day7_11;

import java.util.Arrays;

public class Test {
    public static int maxSize = 20;


    public static void main(String[] args) {
        int[] arr =  {1,8,10,89,1000,1234};
        int i = fibSearch(arr, 1234);
        System.out.println(i);
    }

    public static int[]fib(){
        int[] f = new int[maxSize];
        f[0] = 1;
        f[1] = 1;
        for(int i=2;i<maxSize;i++){
            f[i] = f[i-1] + f[i-2];
        }
        return f;
    }

    //使用非递归的方式

    /**
     *
     * @param a 数组
     * @param key 我们需要查找的关键码(值)
     * @return  返回对应的下标,如果没有-1
     */
    public static int fibSearch(int[] a,int key){
        int low = 0;
        int high = a.length-1;
        int k =0;
        int mid = 0;
        int f[] = fib();
        while (high > f[k] -1 ){
            k++;
        }
        //因为f[k]值可能大于a的长度,因此我们需要使用Arrays类,构造一个新的数组,并指向a[]
        //不足的部分会使用0填充
        int[] temp = Arrays.copyOf(a,f[k]);
        //实际上需求使用a数组最后的数填充temp
        //temp = {1,8,10,89,1000,1234,0,0,0} => {1,8,10,89,1000,1234,1234,1234,1234}
        for(int i=high+1;i<temp.length;i++){
            temp[i] = a[high];
        }
        //使用while来循环处理,找到我们的数key
        while (low<=high){
            mid = low+f[k-1]-1;
            if(key<temp[mid]){ //我们应该继续向数组的前面查找
                high = mid - 1;
                //为什么是k-1
                //说明
                //1.全部元素 = 前面的元素 + 后边的元素
                //2.f[k] = f[k-1] + f[k-2]
                //因为前面有f[k-1]个元素,所以可以继续拆分f[k-1] = f[k-2] + f[k-3]
                //即在f[k-1]的前面继续查找k--
                //即下次循环mid = f[k-1-1]-1
                k--;
            }else if(key>temp[mid]){
                low = mid + 1;
                //为什么是k-=2
                //说明
                //1.全部元素 = 前面的元素+后边元素
                //2.f[k] = f[k-1] + f[k-2]
                //3.因为后面我们有f[k-2]所以可以继续拆分f[k-1] = f[k-3] + f[k-4]
                //4.即在f[k-2]的前面进行查找k-=2
                //5.即下次循环mid = f[k-1-2]-1
                k -=2;
            }else{ //找到
                //需要确定,返回的是哪个下标
                if(mid<=high){
                    return mid;
                }else{
                    return high;
                }
            }
        }
        return -1;

    }





}














  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值