K-Means聚类分析

目录

1.聚类分析步骤

1.1简单介绍

1.2两个概念

1.3几种距离

1.4更新质心

1.5终止条件

2.归一化处理

3.肘部法则

4.搭建K-Means分析模型

5.选择最佳K值

6.绘制3D图形


1.聚类分析步骤


1.1简单介绍


K-Means聚类分析是属于聚类分析的一种,这个数据机器学习的算法;

对数据进行自动分组,使得同一组内的数据样本尽可能相似,不同组之间的数据样本尽可能不同,以此来完成用户细分,这就是聚类。

K-Means是非监督学习中一种很经典的聚类算法

K代表类别数量,Means代表每个类别内的均值,所以K-Means算法又称为K-均值算法。

1.2两个概念


该算法会根据数据样本间的相似性,将数据样本自动分为K个(cluster),相似的数据样本会尽可能被聚到一个簇内。簇,指的就是类别或是组

每个簇都有一个中心位置/中心点,被称作为质心(centroid)。

最开始,会先从数据集中随机选取K=2个对象作为初始的质心。
剩余待分类的样本数据就可以评估自己和哪个质心最相似,然后加入到该质心代表的簇里即可。


1.3几种距离


要判断两个样本之间的相似性,K-Means算法以样本间的距离作为度量标准。
距离越近,表示两个样本越相似;反之,则越不相似。
常见的计算样本间距离的方式有欧式距离、曼哈顿距离、余弦相似度等。
K-Means算法通常采用欧式距离来度量各样本间的距离。


1.4更新质心


由于一开始的质心是随机选择的,导致结果也存在一定的随机性。
因此,当所有样本点分配完成后,需要重新计算2个簇的质心。
计算方式是计算每个簇内所有样本的均值。
&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值