目录
1.聚类分析步骤
1.1简单介绍
K-Means聚类分析是属于聚类分析的一种,这个数据机器学习的算法;
对数据进行自动分组,使得同一组内的数据样本尽可能相似,不同组之间的数据样本尽可能不同,以此来完成用户细分,这就是聚类。
K-Means是非监督学习中一种很经典的聚类算法。
K代表类别数量,Means代表每个类别内的均值,所以K-Means算法又称为K-均值算法。
1.2两个概念
该算法会根据数据样本间的相似性,将数据样本自动分为K个簇(cluster),相似的数据样本会尽可能被聚到一个簇内。簇,指的就是类别或是组。
每个簇都有一个中心位置/中心点,被称作为质心(centroid)。
最开始,会先从数据集中随机选取K=2个对象作为初始的质心。
剩余待分类的样本数据就可以评估自己和哪个质心最相似,然后加入到该质心代表的簇里即可。
1.3几种距离
要判断两个样本之间的相似性,K-Means算法以样本间的距离作为度量标准。
距离越近,表示两个样本越相似;反之,则越不相似。
常见的计算样本间距离的方式有欧式距离、曼哈顿距离、余弦相似度等。
K-Means算法通常采用欧式距离来度量各样本间的距离。
1.4更新质心
由于一开始的质心是随机选择的,导致结果也存在一定的随机性。
因此,当所有样本点分配完成后,需要重新计算2个簇的质心。
计算方式是计算每个簇内所有样本的均值。
&#x