MIT18.06 线性代数笔记 前13课

本文是MIT18.06线性代数课程的笔记概述,涵盖方程组的几何解释、矩阵消元、矩阵乘法与逆矩阵、LU分解等内容。讲解了线性方程组的解空间、列空间、零空间以及线性相关性、基和维数的概念。还涉及矩阵空间、秩1矩阵、图与网络的线性代数应用。
摘要由CSDN通过智能技术生成

因为是在学校学完了线代再来看视频,因此可能有些地方写的十分简略,想看详细的笔记可以去https://github.com/apachecn/math,这同学的笔记还是蛮全的。强推MIT18.06,可能不适合初学者,但是会给你一个完全不一样的线性代数。

1 方程组的几何解释

除了用普通的视角来看,还可以看作是向量的线性组合等于一个向量
有没有解就是看b是不是能由A中列向量线性组合出,也就是b是不是在A列向量的张量中

2 矩阵消元

高斯消元法,得到上三角距离U,尤其重要的是利用矩阵左乘操作行向量来实现消元步骤。
初等矩阵的逆很好求
左行右列。左乘行向量表示对原矩阵的行向量进行线性组合,右乘列向量表示对原矩阵的列向量进行线性组合。

3 矩阵乘法及逆矩阵

5种乘法:行乘列(对乘加),列乘行(外积的和),A和B中各个列相乘(A中各列的线性组合),A中各行和B相乘(B中各行线性组合),分块乘法
A不可逆则Ax=0有非零解,A可逆只有零解
矩阵求逆等价于求一系列Ax=b的方程组,不过A是相同的,只有b在变,b就是I的各列,所以可以把A和I放在一起,把A变成I,那么I就变成了A的逆,相当于一次求出A相同的多个方程组的解. E E E是消元矩阵,那么 E [ A I ] = [ I A − 1 ] E [A \quad I] = [I \quad A^{-1}] E[AI]=[IA1],消元矩阵 E E E就是 A − 1 A^{-1} A1

4 A=LU分解

L L L是下三角矩阵,对角线都是1,U是上三角矩阵。 L = E − 1 L = E^{-1} L=E1 L L L有一个非常好的性质,求 L L L只需要把各列消元用到的乘数写在相应位置即可,如果没有乘过初等置换矩阵的话(结合矩阵乘法可以看作L的各行和U相乘,就是做U中各行的线性组合)。
n阶初等置换矩阵做成一个群。乘法封闭,逆封闭。

5 转置 置换 向量空间R

初等置换矩阵的逆等于其转置
除了初等置换矩阵之外,还有一些矩阵也具有这样的性质
A A T AA^T AAT一定是对称矩阵,因为 ( A A T ) = ( A T ) T A T = A A T (AA^T)=(A^T)^TA^T=AA^T (AAT)=(AT)TAT=AAT
向量空间满足8个条件,核心思想是向量的线性组合运算是要封闭的。
R n R^n Rn的子空间有原点,过原点的直线,以及过原点的各个不同维数的超平面,任何一个子空间都包含 R n R^n Rn的零向量
列空间指矩阵各列的列向量组成的向量空间,就是各列列向量的张量(线性组合),同理有行空间

6 列空间 零空间

两种获得子空间的方式,向量的线性组合(列空间),齐次线性方程组的解(零空间)
线性方程组有解:b在A的列空间中
线性相关:去掉一个向量,不影响其余向量通过线性组合生成子空间,换言之,这个向量在其余向量生成的子空间中
矩阵的列秩:几个列向量对子空间生成有贡献

7 Ax=0

消元过程中改变的是列空间,行空间的零空间不变
化简行阶梯形 R = [ I F ] R=[I \quad F] R=[IF]
则特解构成的矩阵就是 [ − F I ] \begin{bmatrix} -F\\ I \end{bmatrix} [FI]
上下两个 I I

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值