使用Paddle2.0构建一个经典的文本生成模型GPT-2

引入

  • GPT-2 是一种基于 transformer 的大型语言模型,是一个经典的文本生成模型
  • 该模型可以生成连贯的文本段落,完成阅读理解、问答、机器翻译等多项不同的语言建模任务
  • 本次就介绍一下如何使用Paddle2.0构建一个经典的文本生成模型GPT-2

环境设置

  • 本文基于飞桨2.0-rc0版本
# 导入必要的包
import math
import paddle
import paddle.nn as nn

# 打印Paddle版本
print('paddle version: %s' % paddle.__version__)
paddle version: 2.0.0-rc0

模型架构

  • GPT-2是一个单向的语言模型,由前后的Embedding层和Transformer Encoder两部分组成
  • 其中Transformer Encoder是由多层的Multi-Head-Self-Attention Layer+ MLP Layer堆叠而成的

构建 Multi-Head-Self-Attention Layer

  • 首先从最基础的 Layer 开始构建
  • 从名字就能看出这个层的特点:Multi-Head——多头、Self-Attention——自注意力
class Attention(nn.Layer):
    def __init__(self, 
                embedding_size, 
                num_attention_heads,
                attention_dropout,
                residual_dropout):
        super(Attention, self).__init__()
        
        self.num_attention_heads = num_attention_heads
        self.size_per_head = embedding_size // num_attention_heads
        self.embedding_size = embedding_size

        self.query_key_value = nn.Linear(embedding_size, embedding_size * 3)
        self.attn_drop = nn.Dropout(attention_dropout)
        self.resid_drop = nn.Dropout(residual_dropout)
        self.dense = nn.Linear(embedding_size, embedding_size)
    
    def split_heads(self, x):
        x = x.reshape([-1, self.seq_len, self.num_attention_heads, self.size_per_head])
        return x.transpose((0, 2, 1, 3))

    def forward(self, x, kv_cache=None):
        self.seq_len = x.shape[1]

        # 自注意力
        x = self.query_key_value(x)
        q, k, v = x.split(num_or_sections=3, axis=2)
        
        # 多头
        q = self.split_heads(q)
        k = self.split_heads(k)
        v = self.split_heads(v)
        
        # 缓存
        if kv_cache is not None:
            pk, pv = paddle.unstack(
以下是使用 PaddleNLP 模块建立 GPT-2 文本生成模型的代码示例: ```python import paddle import paddle.nn.functional as F from paddlenlp.transformers import GPT2Model, GPT2ForPretraining # 加载 GPT-2 预训练模型 model = GPT2Model.from_pretrained('gpt2-medium-en') # 定义文本生成模型 class GPT2Generator(paddle.nn.Layer): def __init__(self, decoder): super().__init__() self.decoder = decoder def forward(self, input_ids, position_ids=None, attention_mask=None): # 使用 GPT-2 的 decoder 生成文本 output = self.decoder(input_ids, position_ids=position_ids, attention_mask=attention_mask) return output # 加载 GPT-2 预训练模型的 decoder 部分作为文本生成模型的主体部分 decoder = model.transformer generator = GPT2Generator(decoder) # 定义生成文本的方法 def generate_text(model, prompt, max_len=50, temperature=1.0): model.eval() # 将 prompt 转换为 token_ids token_ids = model.tokenizer.encode(prompt) token_ids = paddle.to_tensor(token_ids).unsqueeze(0) # 生成文本 for i in range(max_len): output = model(token_ids) logits = output.logits[:, -1, :] / temperature probs = F.softmax(logits, axis=-1) next_token = paddle.multinomial(probs, num_samples=1) token_ids = paddle.concat([token_ids, next_token], axis=-1) # 将生成的 token_ids 转换为文本 generated_text = model.tokenizer.decode(token_ids.numpy().squeeze().tolist()) return generated_text # 测试文本生成模型 generated_text = generate_text(model=generator, prompt='PaddlePaddle is', max_len=20, temperature=0.7) print(generated_text) ``` 代码中使用PaddleNLP 模块中的 `GPT2Model` 和 `GPT2ForPretraining` 类,分别表示 GPT-2 预训练模型GPT-2 文本生成模型。首先加载 GPT-2 预训练模型,然后使用其 decoder 部分作为文本生成模型的主体部分。代码中还定义了一个 `generate_text` 方法,用于生成文本。在方法中,首先将 prompt 转换为 token_ids,然后使用文本生成模型生成文本,最后将生成的 token_ids 转换为文本。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值