Paddle2.0:ONNX模型的导出和部署

引入

  • 除了动态图转静态图的方式导出推理模型之外
  • Paddle2.0中也正式内置了ONNX模型的导出功能
  • 本文将通过一个实例演示一下如何将Paddle模型导出为ONNX模型
  • 并在ONNXRunTime上完成模型的推理预测

ONNX

  • Open Neural Network Exchange (ONNX) ,是一个机器学习模型的开放标准,方便不同框架之间进行模型交换
  • 你可以在很多支持ONNX模型导出的框架上构建模型,然后导出ONNX模型进行预测部署

Paddle2ONNX

  • 目前Paddle导出ONNX模型需要安装Paddle2ONNX进行额外支持
  • Paddle2ONNX支持将PaddlePaddle模型格式转化到ONNX模型格式。
    • 模型格式,支持Paddle静态图和动态图模型转为ONNX,可转换由save_inference_model导出的静态图模型。动态图转换目前处于实验状态,将伴随Paddle 2.0正式版发布后,提供详细使用教程
    • 算子支持,目前稳定支持导出ONNX Opset 9~11,部分Paddle算子支持更低的ONNX Opset转换,详情可参考算子列表
    • 模型类型,官方测试可转换的模型请参考模型库
  • 更多详情请参考Paddle2ONNX的Github主页
# PIP 安装
$ pip install paddle2onnx
# 源码安装
$ git clone https://github.com/paddlepaddle/paddle2onnx
$ cd paddle2onnx 
$ python setup.py install

动态图ONNX模型导出

  • 如果使用Paddle2.0构建的动态图模型,可以通过调用paddle.onnx.export()来实现ONNX模型的快速导出
  • 大致的原理就是动转静在将静态图模型转换为ONNX模型,所以转换的代码上与动转静很相似
  • 接下来就通过代码来演示一下导出的流程
import os
import time
import paddle

# 从模型代码中导入模型
from u2net import U2NETP

# 实例化模型
model = U2NETP()

# 加载预训练模型参数
model.set_dict(paddle.load([path to the pretrained model]))

# 将模型设置为评估状态
model.eval()

# 定义输入数据
input_spec = paddle
<think>首先,用户的问题是:如何将PaddleOCR中的CLS模型导出并转换为ONNX模型。用户提到了一个引用,是关于将PaddleOCR的OCR模型(包括检测、分类识别)转换为ONNX格式的步骤。用户引用的内容来自[^1],显示了对PaddleOCR模型的转换命令:-对于检测模型(det):`paddle2onnx--model_dirch_PP-OCRv4_det_infer...--save_filech_PP-OCRv4_det_infer.onnx`-对于分类模型(cls):`paddle2onnx--model_dirch_ppocr_mobile_v2.0_cls_infer...--save_filech_ppocr_mobile_v2.0_cls_infer.onnx--enable_auto_update_opset`-对于识别模型(rec):类似命令用户特别关注CLS模型(分类模型),并说“我想将PaddleOCR的CLS模型转换为ONNX格式的方法”。所以,我需要聚焦于如何导出转换PaddleOCR的文本方向分类(CLS)模型ONNX。关键步骤:1.**准备模型**:确保已下载PaddleOCR的预训练CLS模型PaddleOCR提供了预训练模型,用户需要下载相应的推理模型目录。2.**使用paddle2onnx工具**:这是PaddlePaddle官方提供的工具,用于将Paddle模型转换为ONNX格式。-命令语法基于引用:`paddle2onnx--model_dir<model_dir>--model_filename<model_file>--params_filename<params_file>--save_file<save_path.onnx>[--enable_auto_update_opset]`3.为CLS模型指定参数:-`--model_dir`:模型目录路径。-`--model_filename`:模型文件名称,通常是`inference.pdmodel`。-`--params_filename`:参数文件名称,通常是`inference.pdiparams`。-`--save_file`:输出ONNX文件的路径名称。-`--enable_auto_update_opset`:可选,自动更新ONNXopset,以确保兼容性。参考用户引用的CLS部分:`paddle2onnx--model_dirch_ppocr_mobile_v2.0_cls_infer--model_filenameinference.pdmodel--params_filenameinference.pdiparams--save_filech_ppocr_mobile_v2.0_cls_infer.onnx--enable_auto_update_opset`这应该是一个有效的命令模板。额外注意事项:-**环境设置**:用户需要安装PaddlePaddlepaddle2onnx。确保Python环境中安装了这些包。-安装命令示例:`pipinstallpaddlepaddlepaddle2onnx`-**模型下载**:PaddleOCR模型可以从其GitHub仓库下载。用户需要下载CLS模型的推理版本。-**验证转换**:转换后,可以验证ONNX模型是否可用,例如使用ONNXRuntime进行推理。结构化我的回答:1.**清晰结构**:用户指令要求结构清晰,帮助用户逐步解决问题。2.**系统级指令**:所有行内数学表达式用$...$,独立公式用$$...$$,但这个问题不涉及数学公式,所以我应该避免使用数学内容,除非必要。问题关于模型转换,没有数学部分。所以,不需要LaTeX数学格式。3.**使用中文回答**:用户指定了中文。4.**生成相关问题**:在回答结束时,添加几个相关问题,以引导用户。5.**引用标识**:在回答中引用时,末尾添加引用标识,如[^1]。用户提供了引用[^1],所以我在涉及参考部分时用这个。6.**真实可靠**:提供准确信息。我熟悉PaddleOCRpaddle2onnx工具。逐步步骤:-步骤1:安装必要环境。-步骤2:下载PaddleOCRCLS模型。-步骤3:运行paddle2onnx命令进行转换。-步骤4:验证转换后的ONNX模型。可能的挑战:-用户可能没有指定模型版本。PaddleOCR有多个版本(如PP-OCRv2,PP-OCRv3,PP-OCRv4)。引用中是v2.0的cls模型,但用户可能用其他版本。命令参数类似。相关问题生成:类似示例结尾的“相关问题”,例如:1.转换时常见的错误解决方法?2.如何优化ONNX模型以提高性能?3.集成ONNX模型到其他框架的方法?回答格式:-以段落开始,解释过程。-然后提供代码块(如Python命令)。-添加相关问题。</think> ### 如何将PaddleOCR中的CLS模型导出并转换为ONNX模型PaddleOCR中的文本方向分类(CLS)模型导出并转换为ONNX格式是一个标准过程,主要使用PaddlePaddle官方提供的`paddle2onnx`工具来完成。这个过程涉及下载预训练的CLS模型、运行转换命令,并验证转换后的ONNX文件。以下是基于您提供的引用[^1]中的示例(针对CLS模型部分的命令),并结合最佳实践整理的逐步指南。步骤确保兼容最新的PaddleOCR版本(如PP-OCRv3或PP-OCRv4),具体命令参数可能根据模型版本略有调整[^1]。 #### 准备工作:环境设置 在开始转换之前,请确保您的开发环境满足以下要求: - **Python环境**:推荐Python 3.6+。 - **安装依赖包**: - 安装PaddlePaddlePaddlePaddle深度学习框架)paddle2onnx工具: ```bash pip install paddlepaddle paddle2onnx ``` - 如果涉及GPU推理,可选择安装CUDA版本的PaddlePaddle(如`pip install paddlepaddle-gpu`)。 - **下载CLS模型**: - 从PaddleOCR的官方GitHub仓库下载预训练模型。CLS模型通常以推理格式提供,包含`inference.pdmodel`(模型文件)`inference.pdiparams`(参数文件): - 下载链接示例(PP-OCRv2/v3/v4模型):[PaddleOCR GitHub](https://github.com/PaddlePaddle/PaddleOCR) - 将模型目录解压到本地路径,例如:`ch_ppocr_mobile_v2.0_cls_infer/`(路径名取决于您下载的具体模型版本)。 #### 转换步骤:使用paddle2onnx工具 转换CLS模型的核心是运行`paddle2onnx`命令。以下是针对CLS模型的完整转换流程,基于您的引用[^1]中的示例进行了优化: 1. **导出Paddle模型ONNX格式**: - 打开终端,导航到模型目录的父路径。 - 运行以下命令(替换`<model_dir>`为您的模型目录路径): ```bash paddle2onnx \ --model_dir <model_dir> \ --model_filename inference.pdmodel \ --params_filename inference.pdiparams \ --save_file <output_path>.onnx \ --enable_auto_update_opset ``` - **参数解释**: - `--model_dir`: CLS模型的目录路径,例如`ch_ppocr_mobile_v2.0_cls_infer/`(引用[^1]中示例)。 - `--model_filename``--params_filename`: 固定为`inference.pdmodel``inference.pdiparams`(这是PaddleOCR模型的标准文件名)。 - `--save_file`: 输出的ONNX文件路径,例如`./cls_model.onnx`。 - `--enable_auto_update_opset`: 自动更新ONNX opset版本(确保兼容性),强烈建议添加此选项以避免转换错误。 - **示例命令**(基于引用[^1]的CLS部分): ```bash paddle2onnx \ --model_dir ch_ppocr_mobile_v2.0_cls_infer \ --model_filename inference.pdmodel \ --params_filename inference.pdiparams \ --save_file ch_ppocr_mobile_v2.0_cls_infer.onnx \ --enable_auto_update_opset ``` 此命令会将模型保存在当前目录下,生成`ch_ppocr_mobile_v2.0_cls_infer.onnx`文件。 2. **验证转换结果**: - 转换完成后,运行简单检查确认ONNX文件是否有效: - 安装ONNX Runtime(用于推理): ```bash pip install onnxruntime ``` - 使用Python脚本加载ONNX模型并测试推理: ```python import onnxruntime as ort import numpy as np # 加载转换后的CLS模型 ort_session = ort.InferenceSession("<output_path>.onnx") input_name = ort_session.get_inputs()[0].name output_name = ort_session.get_outputs()[0].name # 模拟输入数据(CLS模型输入通常是形状为[1, 3, 48, 192]的图片张量) dummy_input = np.random.randn(1, 3, 48, 192).astype(np.float32) result = ort_session.run([output_name], {input_name: dummy_input}) print(f"预测结果:{result}") # 应输出分类概率张量 ``` - 如果输出无误,表明转换成功;若出错,可能需检查模型版本或添加`--enable_auto_update_opset`(已在步骤1中处理)[^1]。 #### 注意事项 - **常见错误处理**: - **模型路径错误**:确保`--model_dir`指向正确的目录,包含完整的`inference.pdmodel``inference.pdiparams`文件。 - **ONNX版本兼容**:如果使用PaddleOCR v3/v4模型,添加`--enable_auto_update_opset`可以自动解决大多数兼容性问题。 - **环境依赖**:确保paddle2onnx版本>=1.0.0(检查:`paddle2onnx --version`)。 - **性能优化**:转换后ONNX模型可能体积较大(数十MB),可以使用ONNX优化工具(如`onnx-simplifier`)进行压缩: ```bash pip install onnx-simplifier onnxsim <input.onnx> <output.onnx> ``` - **实际应用**:转换后的ONNX模型部署到支持ONNX的平台,如TensorRT、RKNN(RKNN芯片)或移动端,结合OpenCV实现OCR分类任务。 整个转换过程通常需要几分钟,具体取决于模型大小。建议从官方PP-OCRv4或更新版本开始,以确保最佳兼容性精度[^1]。 ###
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值