310 Minimum Height Trees(Medium)

转自个人博客:http://siukwan.sinaapp.com/?p=189

1.这道题目主要是求一个无向图中,以哪个节点为根节点的树的高度最小;

2.常规方法可以使用BFS或者DFS,对每个点都遍历一遍,求出所有点组成的树的高度,然后找出哪些高度最小的节点,可以通过不断更新最低高度来进行剪枝。实际上我写了BFS和DFS的程序,均出现超时。

3.最终的解题思路采用了不断删除叶子节点,逐渐逼近根节点的方法,在删除叶子节点的同时,会有一些新的节点成为叶子节点,于是继续循环删除,直至不能删除为止,那么剩下的节点就是高度最小的根。

4.当n等于1时,需要特殊处理,直接返回{0}。

5.最终会剩下1个节点或者2个节点,1个节点的情况比较好理解,如{0,1}{0,2},同时删除了叶子节点1和2,就剩下0;而两个节点的情况为{0,1},此时0和1的邻居均为1,都是叶子节点,在下一轮操作后,0和1均没有邻居,所以这两个节点都是正确的答案。

6.采用下面的数据结构进行存储,其中采用set是因为便于删除邻居。

struct TreeNode{
	set<int> list;//使用set结构方便删除邻居
	TreeNode(){};
	bool isLeaf(){ return list.size() == 1; };//如果是叶子节点,那么邻居大小是1
};


7.生成用节点存储的树时,耗费的空间为O(V+2E),即V个节点和2E条边;时间复杂度为O(E),即逐渐删除边,直到边的数量为0。(生成树的时候也是遍历了E次)

For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1:

Given n = 4edges = [[1, 0], [1, 2], [1, 3]]

        0
        |
        1
       / \
      2   3

return [1]

Example 2:

Given n = 6edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
      \ | /
        3
        |
        4
        |
        5

return [3, 4]

Hint:

  1. How many MHTs can a graph have at most?

Note:

(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”

(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

Credits:
Special thanks to @peisi for adding this problem and creating all test cases.

Update (2015-11-25):
The function signature had been updated to return List<Integer> instead of integer[]. Please click the reload button above the code editor to reload the newest default code definition.

Subscribe to see which companies asked this question

AC代码:

class Solution {
public:
    struct TreeNode{
        set<int> list;//使用set结构方便删除邻居
        TreeNode(){};
        bool isLeaf(){ return list.size() == 1; };//如果是叶子节点,那么邻居大小是1
    };
    vector<int> findMinHeightTrees(int n, vector<pair<int, int>>& edges) {
 
        if (n == 1) return{ 0 };//当n为1时,初始化node1为空,下面的程序执行结果会输出空
 
        vector<TreeNode> tree(n);
        for (auto e : edges)
        {//使用节点来存储这棵树,耗费的空间为O(n+2e)
            tree[e.first].list.insert(e.second);
            tree[e.second].list.insert(e.first);
        }
 
        vector<int> node1(0);//记录当前的叶子节点
        vector<int> node2(0);//记录删除node1叶子节点后,成为新的叶子节点的节点
 
        for (int i = 0; i < tree.size();i++)
        {//记录叶子节点
            if (tree[i].isLeaf())
                node1.push_back(i);
        }
         
        while (1)
        {
            for (auto leaf:node1)
            {
                //使用迭代器遍历邻居
                for (set<int>::iterator ite = tree[leaf].list.begin(); ite != tree[leaf].list.end(); ite++)
                {
                    int neighbor = *ite;
                    tree[neighbor].list.erase(leaf);//删除叶子节点
                    if (tree[neighbor].isLeaf())//删除后,如果是叶子节点,则放到node2中
                        node2.push_back(neighbor);
                }
            }
            if (node2.empty())
            {//遍历完后,如果node2为空,即node1中的节点不是叶子节点,要么是剩下一个节点,要么剩下两个相互连接的节点
                break;
            }
            node1.clear();
            swap(node1, node2);
        }
        if (node1.size() != 0)
            return node1;//node1中只剩下1个节点,因为邻居为空,所以不能压进node2中
        else if (node1.size() == 0)
            return node2;//node1中有两个节点,且互相连接,邻居都为1,所以被压进node2中(此时邻居都被清除),然后在下一轮循环,两者都不被视为叶子节点
    }
};




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值