【bzoj 2005】能量采集

4 篇文章 0 订阅

传送门~

解题思路

对于一个点 (x,y) ,设 gcd(x,y)=t ,点 (x,y) 对答案的贡献为 (t1)×2+1=t×21
f[i] 表示最大公因数为 i (x,y)有多少个。易证以 i 为公因数的个数为(n÷i)×(m÷i),再减掉以 k×i 为最大公因数的个数即 f[i×k] ,就是以 i <script type="math/tex" id="MathJax-Element-72">i</script>为最大公因数的个数。
代码:

#include<algorithm>
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<string>
#include<cstdlib>
#define ll long long
using namespace std;
ll f[1000005],n,m,p,ans;
int main(){
    scanf("%lld%lld",&n,&m);
    p=min(n,m);
    for(ll i=p;i>=1;i--){
        f[i]=(n/i)*(m/i);
        for(ll j=i*2;j<=p;j+=i) f[i]-=f[j];
        ans+=f[i]*(i*2-1);
    }
    printf("%lld",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值