bzoj2005 能量采集 数论

       这道题目本质上就是求Σ(i=1,m)Σ(j=1,n)2*gcd(i,j)-1,该式等价于2Σ(i=1,m)Σ(j=1,n)gcd(i,j) -m*n=2Σ(d)phi(d)[m/d][n/d]-mn。然后O(N)求出phi()即可。

AC代码如下:

#include<iostream>
#include<cstdio>
#define N 200005
#define ll long long
using namespace std;

int m,n,cnt,c[N]; ll phi[N];
int main(){
	scanf("%d%d",&m,&n); int i,j; ll ans=0;
	if (m<n) swap(m,n); phi[1]=1;
	for (i=2; i<=n; i++){
		if (!phi[i]){ phi[i]=i-1; c[++cnt]=i; }
		for (j=1; j<=cnt; j++){
			if (i*c[j]>m) break;
			if (i%c[j]) phi[i*c[j]]=phi[i]*(c[j]-1); else{
				phi[i*c[j]]=phi[i]*c[j]; break;
			}
		}
	}
	for (i=2; i<=n; i++) phi[i]+=phi[i-1];
	for (i=1; i<=n; i=j+1){
		j=min((m/(m/i)),n/(n/i));
		ans+=(phi[j]-phi[i-1])*(m/i)*(n/i);
	}
	printf("%lld\n",ans*2-(ll)m*n);
	return 0;
}


       后来去网上翻了题解,发现是用素数筛的方法。大概是令f(i)表示第i排的总和,则f(i)=Σ(j|i且j为质数)f[j],那么就可以用素数筛的方法了。这里不在介绍。

by lych

2015.12.11



发布了405 篇原创文章 · 获赞 173 · 访问量 41万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览