机器学习中的决策树及其演化算法

1 树形算法家族族谱

1.1 决策树

  • 采用divide-and-conquer算法思想,递归构建
  • 特征选择——决策树生成——树剪枝
  • 互斥与完备:每个训练样本有且仅有一条路径规则
  • 最终可能训练出多个,可能一个没有;从所有可能决策树中选择最优是NP问题,因此现实中常用启发式(heuristic)方法
  • Loss Function:正则化的极大似然函数

树形表征
这里写图片描述

特征空间表征
这里写图片描述

1.1.1 ID3算法

采用信息增益决定每个节点选择哪个特征——启发认为信息增益大的特征具有更强的分类能力。
信息增益

1.1.2 C4.5算法

采用信息增益比决定每个节点选择哪个特征
信息增益比

1.1.3 CART算法

CART假设决策树是二叉树(是/否),递归地二分每个特征
回归树:平方误差最小化准则
分类树:Gini指数最小化准则

1.1.4 剪枝

决策树的弱项就在于过拟合问题,因此通常需要剪枝后使用。
方法:最小化整体Loss Function
这里写图片描述
参数:α,表征了对模型复杂度的惩罚


1.2 随机森林

  • 能够处理高维数据,不用做特征选择
  • 训练过程中,能检测到特征间的相互影响
  • 训练完成后,能够给出哪个特征比较重要

这里写图片描述
随机森林由多个互不相关的决策树组成,每当有一个样本输入时,森林里的每棵决策树都会对样本进行一次分类打标处理,最后采取投票准则来决定样本属于哪一类。

行采样与列采样
行:样本。采取有放回的采样方式,也就是构建不同的决策树时,可能用到了相同样本。
列:特征。采取无放回的采样方式,保证特征的不相关。

相当于每棵树,在某些领域(特征)上都是专家,经过各专家的举手表决,选出最终结果。

用途

  • 特征选择这里写图片描述
    • eg:特征在树里面的结点深度作为权重
  • 分类 可以给出具体的概率值
  • 回归

1.3 GBDT

Boosting is a powerful technique for combining multiple ‘base’ classifiers to produce
a form of committee whose performance can be significantly better than that of any
of the base classifiers.——《PRML》

1.3.1 Boosting

这里写图片描述

  • 初始化每一维 wi(1)=1/N
  • 对于每一个训练样本训练
    • 通过合适的y最小化
      Jm=i=1Nwi
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值