ETL(Extract-Transform-Load的缩写,即
数据抽取、转换、装载的过程)作为BI/DW(Business Intelligence)的核心和灵魂,能够按照统一的规则集成并提高数据的价值,是负责完成数据从
数据源向目标
数据仓库转化的过程,是实施数据仓库的重要步骤。如果说
数据仓库的模型设计是一座大厦的设计蓝图,数据是砖瓦的话,那么ETL就是建设大厦的过程。在整个项目中最难部分是用户需求分析和模型设计,而ETL规则设计和实施则是工作量最大的,约占整个项目的60%~80%,这是国内外从众多实践中得到的普遍共识。
ETL是
数据抽取(Extract)、清洗(Cleaning)、转换(Transform)、装载(Load)的过程。是构建
数据仓库的重要一环,用户从
数据源抽取出所需的数据,经过
数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。