学习分享
jn10010537
2024年,C#/C++
展开
-
【leetcode】137. 只出现一次的数字 II
【leetcode】137. 只出现一次的数字 II题目python3语言C++语言题目python3语言代码1:class Solution: def singleNumber(self, nums: List[int]) -> int: list1=nums.copy() for i in nums: list1.remove(i) if i not in list1:原创 2021-03-08 22:56:42 · 181 阅读 · 0 评论 -
【leetcode】136. 只出现一次的数字
【leetcode】136. 只出现一次的数字pythonC++python代码1:class Solution(object): def singleNumber(self, nums): """ :type nums: List[int] :rtype: int """ newList=list(set(nums))*2 for i in nums: newList.re原创 2021-03-08 20:57:01 · 93 阅读 · 0 评论 -
mage Processing with Numpy
Image Processing with Numpy —— github墙地址:http://www.degeneratestate.org/posts/2016/Oct/23/image-processing-with-numpy/ https://github.com/ijmbarr/image-processing-with-numpy转载 2018-10-12 16:17:51 · 131 阅读 · 0 评论 -
最简单的线性回归(6行代码)
6行代码,使用决策树进行二分类预测。Decison Tree决策树作为分类器,特点是简单易读,易于理解,具有很强的可解释性。from sklearn import tree #调用decision tree决策树features=[ [140,0] ,[130,0],[150,1],[170,1] ] #两个特征进行回归,对应二维,一个是重量,一个是0表面光滑smooth、1崎岖不平...原创 2018-10-06 10:22:00 · 386 阅读 · 0 评论 -
DecisionTree决策树分类可视化
关于鸢尾花的数据集的介绍,见维基百科 https://en.wikipedia.org/wiki/Iris_flower_data_set该数据集由来自三种鸢尾(Iris setosa,Iris virginica和Iris versicolor)中的每一种的50个样品组成。从每个样品测量四个特征:萼片和花瓣的长度和宽度,以厘米为单位。数据集包含一组150个记录,属于5个属性 - 花瓣长度,...原创 2018-10-06 20:40:53 · 1272 阅读 · 0 评论 -
pyplot.hist直方图可视化特征信息
在机器学习中,我们需要人工筛选有用的特征信息,以便快速准确的分类;我们希望特征信息是独立的,例如英寸,厘米都是度量的,彼此之间是相关的,我们不需要都作为特征信息;通过pyplot.hist直方图,对已二分类如果选用了该特征,几乎是出现50:50可能性,则说明该特征无用。import numpy as npimport matplotlib.pyplot as plt# 假设有一千...原创 2018-10-06 22:26:35 · 908 阅读 · 0 评论 -
转:使用 opencv 将图片压缩到指定文件尺寸
https://www.cnblogs.com/shoufengwei/p/8526105.html转载 2018-10-13 18:59:03 · 2275 阅读 · 0 评论 -
DecisionTree与K近邻预测鸢尾花类型
使用决策树Decision Tree和K近邻分别对鸢尾花数据进行预测,只需要修改分类器部分的代码,如下面决策树分类器的代码:from sklearn import treemy_classifier=tree.DecisionTreeClassifier()换成K近邻的代码:from sklearn import neighborsmy_classifier=neighbor...原创 2018-10-07 10:37:20 · 318 阅读 · 0 评论 -
KNN(K近邻)实现分类
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个...原创 2018-09-28 18:41:05 · 1200 阅读 · 0 评论 -
采用face_recognition包做人脸检测
face_recognitiaon安装要基于dlib,安装dlib一定上官网去查对应的python安装的版本。通过cmd中pip install XXX。本代码实现了功能:考勤,即通过数据库的照片训练k近邻分类器,然后测试未知样本。代码不足:关于编码解码的问题没有解决,图片中对应中文人名是乱码。希望集思广益,或者自己后期完善~(代码位置150~151处)# 采用face_reco...原创 2018-09-29 12:27:23 · 3407 阅读 · 3 评论 -
译FaceNet: A Unified Embedding for Face Recognition and Clustering
FaceNet: A Unified Embedding for Face Recognition and ClusteringFaceNet:一种用于人脸识别和聚类的统一嵌入论文下载地址:https://arxiv.org/abs/1503.03832?context=cs翻译如有不合适之处,欢迎评论留言~疯了,昨晚翻译完了,居然网络没保存上!!!!周末再弄https://b...翻译 2018-09-19 10:16:01 · 729 阅读 · 0 评论 -
译RCNN(Rich feature hierarchies for accurate object detection and semantic segmentation)
Rich feature hierarchies for accurate object detection and semantic segmentation丰富的特征阶层,用于准确的对象检测和语义分割论文网址: https://arxiv.org/abs/1311.2524如有不恰当的地方,欢迎评论~Abstract摘要Object detection performa...翻译 2018-09-18 23:13:22 · 387 阅读 · 0 评论 -
相关网站
Netscope1-基于Web的工具,用于可视化神经网络架构(或技术上,任何有向无环图)。它目前支持Caffe的原型文本格式。https://ethereon.github.io/netscope/quickstart.html 2-请问人工神经网络中的activation function的作用具体是什么?为什么ReLu要好过于tanh和sigmoid function?ht...原创 2018-08-17 10:59:40 · 170 阅读 · 0 评论 -
转:AlexNet论文翻译——中英文对照
本博文用于学习,博主懒,直接转自下链接:http://noahsnail.com/2017/07/04/2017-7-4-AlexNet%E8%AE%BA%E6%96%87%E7%BF%BB%E8%AF%91/AlexNet论文下载地址:https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convo...翻译 2018-09-09 17:45:03 · 644 阅读 · 0 评论 -
转:从AlexNet开始(一)
本博文仅供学习,转自以下链接:https://blog.csdn.net/zym19941119/article/details/78982441从AlexNet开始(一)不可否认,深度学习的热潮正是由2012年AlexNet的出现而引发的,因此,学习AlexNet网络的结构,对于CNN的学习与理解是不可或缺的。在本篇博客中,将会对AlexNet的论文进行翻译与解读,并在下一篇博客中试...转载 2018-09-10 00:08:43 · 250 阅读 · 0 评论