ERA5 hourly data on pressure levels数据处理/Python(三)

一、需求分析

ERA5的pressure levels数据提供小时和月两种尺度,在实际应用中会需要日尺度的数据,需要我们自行通过小时数据计算。

二、数据准备

ERA5数据下载地址:

Copernicus Climate Data Store | Copernicus Climate Data Store

下载2022年逐月的多层多要素的小时数据,依次存为202201.nc...

备注:

1.每次最多可以下载60000个数据,所以分月下载。

2.下载时注意每个月是否下全所有天数,如选择1月31天,到2月自动调整为28/29天,再选3月就只选择28/29天,需要手动添加剩下的天数。

三、程序设计

最初设想的是逐层逐要素计算日平均,套嵌了多个循环,最中参考AI的结果,直接一行代码搞定。再把每个月的日均值append,输出即可。

# -*- coding: utf-8 -*-
"""
Created on Thu Aug  1 09:08:50 2024

@author: DR
"""

import xarray as xr
import os

# 文件前缀
data_folder = r'D:\test\ERA5_hour'  # 替换为你的数据目录
months = range(1, 13)  # 月份范围

# 存储所有月份的逐日均值
daily_means_all_months = []

# 遍历每个月的文件
for month in months:
    file_name = os.path.join(data_folder, f'2022{str(month).zfill(2)}.nc')
    ds = xr.open_dataset(file_name)

    # 计算逐日均值
    daily_means = ds.resample(time='D').mean()

    # 添加到列表中
    daily_means_all_months.append(daily_means)

# 合并所有月份的逐日均值数据
ds_daily_combined = xr.concat(daily_means_all_months, dim='time')

# 输出合并后的NC文件,保留原始的经纬度和层级信息
output_file_name = '2022_daily_mean.nc'    
ds_daily_combined.to_netcdf(os.path.join(data_folder, output_file_name))

四、运行结果

我这里就是自3月起只下载了28天的数据,所以最终只有339天的数据。

### ERA5 数据处理成日值的方法 对于ERA5数据的处理,尤其是将其转换为日值的过程,可以采用多种方法和工具实现。这些工具包括Python、MATLAB 和 NCL。 #### 使用 Python 进行 ERA5 数据的日值计算 在Python中,`netCDF4`库能够方便地读取 NetCDF 文件中的ERA5数据[^1]。为了获取每日平均温度或其他变量的日值,通常会执行如下操作: ```python from netCDF4 import Dataset import numpy as np def daily_mean_temperature(nc_file_path, variable_name='t2m'): dataset = Dataset(nc_file_path) time_var = dataset.variables['time'] temp_data = dataset.variables[variable_name][:] # 假设每小时有记录,则一天内共有24个时间点 days_count = int(len(time_var)/24) reshaped_temp = temp_data.reshape(days_count, 24, *temp_data.shape[1:]) mean_daily_temps = np.mean(reshaped_temp, axis=1) return mean_daily_temps ``` 这段代码展示了如何通过重塑数组结构来获得每天的平均气温[^3]。 #### 利用 MATLAB 实现相同目标 同样,在MATLAB环境下,可以通过调用特定函数如 `ncread` 来加载NetCDF格式下的ERA5资料,并进一步加工得到所需的时间尺度上的统计数据[^2]。 ```matlab % 加载nc文件 filename = 'era5_example.nc'; varname = 'temperature'; % 或者其他感兴趣的物理量名称 data = ncread(filename,varname); % 计算日均温 (假设数据按小时存储) dailyMeans = mean(reshape(data,[],24,size(data,end)),2); ``` 此脚本片段实现了从原始逐时观测到日度统计指标转变的功能[^4]。 #### 应用 NCL 完成任务 NCL(NCAR Command Language)作为一种专用于科学数据分析的语言,提供了简洁而强大的功能去处理像ERA5这样的大型气候模型输出产品。下面给出了一种可能的方式来进行日汇总运算: ```ncl load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl" load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/contributed.ncl" begin file = addfile("your_era5_dataset.nc","r") var = file->variable_of_interest@values ; 将一维序列重新排列为二维矩阵,其中每一列代表一日内的不同时刻 dim0 = dimsizes(var)(0) / 24 reshape_var = conform_dims((/dim0,24,dimsizes(var)(1:)/),var,False) avg_dayly_values = dim_avg_wgt(reshape_var,True,(/True,False,False/)) end ``` 上述种方式分别适用于不同的编程环境和个人偏好;然而无论选用哪种途径,核心思路都是相似的——即先按照日期分组再求得各组内部数值特征描述符(比如这里所说的“平均”)。值得注意的是实际应用过程中还需考虑更多细节因素,例如缺失值处理、质量控制等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值