NOI 2001 & poj 1185 && NYOJ 85 炮兵阵地(状压dp)

炮兵阵地

时间限制: 2000 ms  |  内存限制: 65535 KB
难度: 6
描述
司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示: 

如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。
输入
第一行输出数据测试组数X(0<X<100)
接下来每组测试数据的第一行包含两个由空格分割开的正整数,分别表示N和M; 接下来的N行,每一行含有连续的M个字符('P'或者'H'),中间没有空格。按顺序表示地图中每一行的数据。0<=N <= 100;0<=M <= 10。
输出
每组测试数据输出仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。
样例输入
1
5 4
PHPP
PPHH
PPPP
PHPP
PHHP
样例输出
6

package D20160711;

import java.util.Arrays;
import java.util.Scanner;

public class F {
	static int n,m;
	static int[] a = new int[105];
	static int[] f = new int[105];
	static int[] sum = new int[105];
	static int[][][] dp = new int[105][100][100];
	static int po;
	static boolean jug(int x){
		if((x&(x<<1))!=0) return false;
		if((x&(x<<2))!=0) return false;
		return true;
	}
	static void calall(){
		po=0;
		int all = 1<<n;
		for(int i=0;i<all;i++){
			if(jug(i))f[++po]=i;
		}
	}
	static boolean lineok(int k,int x){
		if((a[k]&x)!=0)return false;
		return true;
	}
//	static int calnum(int x){
//		int nn = 0;
//		int su = x;
//		while(su!=0){
//			nn+=(su&1);
//			su>>=1;
//		}
//		return nn;
//	}
//	
	static int calnum(int x)
	{
	   int cnt=0;
	   while(x!=0)
	   {
	       cnt++;
	       x&=(x-1);
	   }
	   return cnt;
	}
	 
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Scanner in = new Scanner(System.in);
		m=in.nextInt();
		n=in.nextInt();
		calall();
		String s = in.nextLine();
		for(int i=1;i<=m;i++){
			s=in.nextLine();
			a[i]=0;
			for(int j=1;j<=n;j++){
				if(s.charAt(j-1)=='H')a[i]+=(1<<(n-j));///
			}
		}
		for(int i=0;i<105;i++){
			for(int j=0;j<100;j++){
				for(int k=0;k<100;k++){
					dp[i][j][k]=-1;
				}
			}
		}
		for(int i=1;i<=po;i++){
			sum[i]=calnum(f[i]);
			if(lineok(1,f[i])){
				dp[1][1][i]=sum[i];
			}
		}
		for(int i=2;i<=m;i++){
			for(int t=1;t<=po;t++){
				if(!lineok(i,f[t]))continue;
				for(int j=1;j<=po;j++){
					if((f[t]&f[j])!=0)continue;
					for(int k=1;k<=po;k++){
						if((f[t]&f[k])!=0)continue;
						if(dp[i-1][j][k]==-1)continue;
						dp[i][k][t]=Math.max(dp[i][k][t], dp[i-1][j][k]+sum[t]);
					}
				}
			}
		}
		int ans = 0;
		for(int i=1;i<=m;i++){
			for(int j=1;j<=po;j++){
				for(int k=1;k<=po;k++){
					ans=Math.max(ans,dp[i][j][k]);
					
				}
			}
		}
		System.out.println(ans);
	}

}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值