OpenCV CUDA模块光流计算-----实现Farneback光流算法的类cv::cuda::FarnebackOpticalFlow

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::cuda::FarnebackOpticalFlow 是 OpenCV CUDA 模块中实现 Farneback 光流算法 的类。该类用于在 GPU 上高效地计算两帧图像之间的稠密光流(Dense Optical Flow),特别适合视频分析和运动估计。

类定义概览

属性说明
头文件<opencv2/cudaoptflow.hpp>
命名空间cv::cuda
继承自cv::cuda::DenseOpticalFlow
用途计算两个图像帧之间的稠密光流(每个像素都有一个运动向量)
GPU 加速支持 CUDA GPU 加速

创建与初始化

创建对象

cv::Ptr<cv::cuda::FarnebackOpticalFlow> farneback = cv::cuda::FarnebackOpticalFlow::create();

你也可以通过设置参数来定制化这个对象:

cv::Ptr<cv::cuda::FarnebackOpticalFlow> farneback = cv::cuda::FarnebackOpticalFlow::create(
    int numLevels = 5,           // 图像金字塔的层数
    double pyrScale = 0.5,       // 金字塔缩放因子
    bool fastPyramids = false,   // 是否使用快速金字塔构建
    int winSize = 13,            // 滑动窗口大小
    int numIters = 10,           // 迭代次数
    int polyN = 5,               // 多项式展开邻域大小
    double polySigma = 1.1,      // 高斯权重的标准差
    int flags = 0                // 标志位
);

或者,你可以创建默认对象后单独设置参数:

farneback->setNumLevels(5);          // 设置金字塔层数
farneback->setPyrScale(0.5);         // 设置金字塔缩放因子
farneback->setFastPyramids(false);   // 是否使用快速金字塔
farneback->setWinSize(13);           // 设置滑动窗口大小
farneback->setNumIters(10);          // 设置迭代次数
farneback->setPolyN(5);              // 设置多项式展开邻域大小
farneback->setPolySigma(1.1);        // 设置高斯权重的标准差
farneback->setFlags(0);              // 设置标志位

代码示例

#include <opencv2/cudaimgproc.hpp>  // for upload/download
#include <opencv2/cudaoptflow.hpp>
#include <opencv2/opencv.hpp>  // for imread, imshow 等

int main()
{
    // Step 1: 加载灰度图像
    cv::Mat frame1 = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/frame1.png", cv::IMREAD_GRAYSCALE );
    cv::Mat frame2 = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/frame2.png", cv::IMREAD_GRAYSCALE );
if (frame1.empty() || frame2.empty()) {
        std::cerr << "无法加载图像" << std::endl;
        return -1;
    }

    // Step 2: 上传到 GPU
    cv::cuda::GpuMat d_frame1, d_frame2;
    d_frame1.upload(frame1);
    d_frame2.upload(frame2);

    // Step 3: 创建 FarnebackOpticalFlow 对象,并设置参数
    cv::Ptr<cv::cuda::FarnebackOpticalFlow> farneback =
        cv::cuda::FarnebackOpticalFlow::create(
            5,       // numLevels
            0.5,     // pyrScale
            false,   // fastPyramids
            21,      // winSize
            20,      // numIters
            7,       // polyN
            1.5,     // polySigma
            0        // flags
        );

    // Step 4: 准备输出 flow 图像(CV_32FC2)
    cv::cuda::GpuMat d_flow;
    farneback->calc(d_frame1, d_frame2, d_flow);

    // Step 5: 下载结果到 CPU
    cv::Mat host_flow;
    d_flow.download(host_flow);  // CV_32FC2

    // Step 6: 分离 dx 和 dy 通道
    std::vector<cv::Mat> flow_parts(2);
    cv::split(host_flow, flow_parts);  // flow_parts[0] = dx, flow_parts[1] = dy

    // Step 7: 计算 magnitude 和 angle
    cv::Mat mag, ang;
    cv::cartToPolar(flow_parts[0], flow_parts[1], mag, ang, true);  // 角度单位为 degree

    // Step 8: 构建 HSV 图像
    std::vector<cv::Mat> hsv_channels;

    // Hue: 角度归一化到 [0, 1]
    ang.convertTo(ang, CV_32F);
    ang = ang.mul(cv::Mat::ones(ang.size(), CV_32F) / 360.0f);  // [0, 1]

    // Saturation: 固定最大
    cv::Mat sat = cv::Mat::ones(ang.size(), CV_32F) * 255;  // [0, 255]

    // Value: magnitude 归一化到 [0, 255]
    cv::Mat val;
    cv::normalize(mag, val, 0, 255, cv::NORM_MINMAX, CV_32F);

    // 合并通道
    hsv_channels.push_back(ang);   // H: [0, 1]
    hsv_channels.push_back(sat);   // S: [0, 255]
    hsv_channels.push_back(val);   // V: [0, 255]

    cv::Mat hsv_merged;
    cv::merge(hsv_channels, hsv_merged);

    // Step 9: 转换为 BGR 显示
    cv::Mat bgr_out;
    hsv_merged.convertTo(hsv_merged, CV_8U);  // 必须先转成 8U
    cv::cvtColor(hsv_merged, bgr_out, cv::COLOR_HSV2BGR);

    // Step 10: 显示图像
    cv::imshow("Optical Flow (Magnitude)", mag);
    cv::imshow("Optical Flow (Angle)", ang);
    cv::imshow("Optical Flow (HSV)", bgr_out);
    cv::waitKey(0);

    return 0;
}

运行结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

村北头的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值